Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 phòng GDĐT Nông Cống - Thanh Hóa

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nông Cống, tỉnh Thanh Hóa; đề thi hình thức 30% trắc nghiệm khách quan kết hợp 70% tự luận, thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm mã đề A – B. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Nông Cống – Thanh Hóa : + Có hai ngăn sách, số sách ngăn trên ít hơn ngăn dưới 20 cuốn. Nếu chuyển 20 cuốn ở ngăn dưới vào ngăn trên thì số sách ngăn trên gấp ba lần số sách ngăn dưới. Tính số sách mỗi ngăn lúc đầu. + Cho đường tròn (O) đường kính AB = 2R. Gọi C là trung điểm của OA. Dây MN vuông góc với AB tại C. Trên cung nhỏ MB lấy điểm K bất kì (K M B). Nối AK cắt MN tại H. a) Chứng minh tứ giác BCHK nội tiếp. b) Chứng minh AH . AK = AB . AC và tam giác BMN là tam giác đều. c) Tìm vị trí của điểm K trên cung nhỏ MB để tổng KM + KN + KB có giá trị lớn nhất. + Hãy khoanh tròn chữ cái đứng trước câu trả lời đúng trong các câu sau. Phương trình nào sau đây là phương trình bậc hai một ẩn?

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Cho phương trình: 2×2 + 3x – 2 = 0 có hai nghiệm là x1 và x2. a) Tính tổng và tích của hai nghiệm x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A = x12 + x22. + Bạn Bình tiêu thụ 10,4 ca-lo cho mỗi phút bơi và 4,8 ca-lo mỗi phút chạy bộ. Bạn Bình cần tiêu thụ tổng cộng 324 ca-lo trong 50 phút với hai hoạt động trên. Vậy bạn Bình cần bao nhiêu thời gian cho mỗi hoạt động? + Cho tam giác SMN nhọn nội tiếp đường tròn (O) (SM < SN). Ba đường cao SI, MF, NE của tam giác SMN cắt nhau tại D. a) Chứng minh EFNM là tứ giác nội tiếp. b) Đường thẳng SI cắt đường tròn (O) tại A (A khác S). Qua A vẽ đường thẳng vuông góc với SN, đường thẳng này cắt MN tại H, cắt đường tròn (O) tại K (K khác A). Chứng minh HA.HK = HM.HN. c) Gọi T là giao điểm của FE và NM; ST cắt đường tròn (O) tại C (C khác S). Chứng minh ba điểm K, F, C thẳng hàng.
Đề giữa học kì 2 Toán 9 năm 2023 - 2024 trường THCS Chương Dương - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Chương Dương, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 trường THCS Chương Dương – Hà Nội : + Theo kế hoạch, hai tổ sản xuất 1100 sản phẩm trong một thời gian nhất định. Do áp dụng kĩ thuật mới nên tổ I đã vượt mức 18% và tổ II đã vượt mức 15%. Vì vậy trong thời gian quy định, họ đã hoàn thành vượt mức 180 sản phẩm. Tính số sản phẩm mỗi tổ được giao theo kế hoạch. + Trong mặt phẳng toạ độ Oxy, cho parabol (P): 2 y x và đường thẳng (d): y = 3x – 2. Biết (d) cắt (P) tại hai điểm A, B. a) Vẽ đường thẳng (d) và parabol (P) trên cùng một mặt phẳng toạ độ. b) Xác định toạ độ hai điểm A và B. c) Tính diện tích tam giác OAB. + Cho nửa đường tròn (O), đường kính AB = 2R. Gọi Ax là tia tiếp tuyến tại A của nửa đường tròn (O). Trên tia Ax lấy điểm M bất kì (M ≠ A), MB cắt nửa đường tròn tại điểm thứ hai là K. Qua A kẻ đường thẳng vuông góc với MO tại I. a) Chứng minh: Tứ giác AIKM nội tiếp. b) Chứng minh MIK = KBA từ đó chứng minh 4 điểm K, I, O, B nằm trên cùng một đường tròn. c) Kéo dài AI cắt nửa đường tròn tại C (C ≠ A). Kẻ CH vuông góc với AB tại H. Tìm vị trí điểm M trên tia Ax để ∆ICH đều. (vị trí điểm M tìm được chỉ dùng cho câu c) d) Gọi N là trung điểm của CH, chứng minh K, N, B thẳng hàng.