Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề Học Sinh Giỏi Huyện Lớp 9 Môn Toán Năm 2022 - 2023 Đề Học Sinh Giỏi Huyện Lớp 9 Môn Toán Năm 2022 - 2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi tuyển chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Một số câu hỏi thú vị trong đề thi bao gồm: + Chứng minh rằng p^2 - 1 chia hết cho 24 với p là số nguyên tố không nhỏ hơn 5. + Chứng minh không tồn tại số nguyên n sao cho n^2 + 26 là số chính phương. + Trong tam giác vuông ABC tại A, điểm D nằm giữa B và C. Hình chiếu của D lần lượt trên AB và AC là E và F. Hãy chứng minh rằng EB⋅FC = ED⋅FD và S(ABD) = AB⋅AD/2⋅sin(BAD). + Cho 2022 số nguyên dương, chứng minh rằng trong số đó, có ít nhất 505 số bằng nhau nếu có 4 số khác nhau thì chúng phải lập tỷ lệ thức. Đề thi này là cơ hội để các em thể hiện kiến thức và khả năng giải quyết vấn đề trong môn Toán. Chúc quý thầy cô và các em học sinh đạt kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND thành phố Bắc Ninh, tỉnh Bắc Ninh. Trích dẫn đề học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Bắc Ninh : + Tìm tất cả các số nguyên dương n sao cho mỗi số n 26 và n 11 đều là các lập phương của một số nguyên dương. + Cho tam giác nhọn ABC nội tiếp đường tròn O R có B C cố định. Các đường cao AD BE CF của tam giác ABC đồng quy tại H. Đường thẳng chứa tia phân giác ngoài của BHC cắt AB AC lần lượt tại M N. a) Chứng minh rằng tam giác AMN cân. b) Chứng minh OA vuông góc với EF AD BC DE EF FD R. c) Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại K K A. Chứng minh rằng HK luôn đi qua một điểm cố định khi A thay đổi. + Cho mỗi điểm trên mặt phẳng được tô bằng một trong hai màu xanh, đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT Thanh Trì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2021 – 2022 phòng Giáo dục và Đào tạo UBND huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 02 năm 2022.
Đề chọn đội tuyển Toán 9 năm 2021 - 2022 trường chuyên Hà Nội - Amsterdam
Thứ Năm ngày 10 tháng 02 năm 2022, trường THPT chuyên Hà Nội – Amsterdam tổ chức kì thi kiểm tra chọn đội tuyển học sinh giỏi môn Toán lớp 9 năm học 2021 – 2022 (vòng thi thứ nhất). Đề chọn đội tuyển Toán 9 năm 2021 – 2022 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề).
Đề học sinh giỏi Toán THCS năm 2021 - 2022 phòng GDĐT thành phố Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi Toán THCS cấp thành phố năm học 2021 – 2022 phòng GD&ĐT thành phố Hưng Yên, tỉnh Hưng Yên; kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2022.