Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng

Tài liệu gồm 537 trang, tổng hợp kiến thức trọng tâm, các dạng toán và bài tập, câu hỏi trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, giúp học sinh rèn luyện khi học chương trình Giải tích 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. CHỦ ĐỀ 1 – NGUYÊN HÀM. A KIẾN THỨC TRỌNG TÂM 1. Nguyên hàm và tính chất. 1.1 Nguyên hàm. 1.2 Tính chất. 2. Phương pháp tính nguyên hàm. 2.1 Phương pháp tính nguyên hàm đổi biến số. 2.2 Phương pháp tính nguyên hàm từng phần. 2.3 Bảng nguyên hàm cơ bản. 2.4 Bảng nguyên hàm mở rộng. B CÁC DẠNG TOÁN VÀ BÀI TẬP + Dạng toán 1.1. Tính nguyên hàm bằng bảng nguyên hàm. + Dạng toán 1.2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng toán 1.3. Nguyên hàm từng phần. C CÂU HỎI TRẮC NGHIỆM 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án. CHỦ ĐỀ 2 – TÍCH PHÂN. A KIẾN THỨC TRỌNG TÂM 1. Khái niệm tích phân. 1.1 Định nghĩa tích phân. 1.2 Tính chất của tích phân. 2. Phương pháp tính tích phân. 2.1 Phương pháp đổi biến số. 2.2 Phương pháp tích phân từng phần. B CÁC DẠNG TOÁN VÀ BÀI TẬP + Dạng toán 2.4. Tích phân cơ bản và tính chất tính phân. + Dạng toán 2.5. Tích phân hàm số phân thức hữu tỉ. + Dạng toán 2.6. Tính chất của tích phân. + Dạng toán 2.7. Tích phân hàm số chứa dấu giá trị tuyệt đối. + Dạng toán 2.8. Phương pháp đổi biến số. + Dạng toán 2.9. Tích phân từng phần. C CÂU HỎI TRẮC NGHIỆM 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án. CHỦ ĐỀ 3 – ỨNG DỤNG TÍCH PHÂN. A KIẾN THỨC TRỌNG TÂM 1. Hình phẳng giới hạn bởi một đường cong và trục hoành. 2. Hình phẳng giới hạn bởi hai đường cong. 3. Tính thể tích khối tròn xoay. B CÁC DẠNG TOÁN VÀ BÀI TẬP + Dạng toán 3.10. Diện tích hình phẳng. + Dạng toán 3.11. Tìm vận tốc, gia tốc, quãng đường trong vật lí. + Dạng toán 3.12. Thể tích của vật thể. + Dạng toán 3.13. Tính thể tích của vật thể tròn xoay. C CÂU HỎI TRẮC NGHIỆM 1. Mức độ nhận biết. Bảng đáp án. 2. Mức độ thông hiểu. Bảng đáp án. 3. Mức độ vận dụng thấp. Bảng đáp án. 4. Mức độ vận dụng cao. Bảng đáp án.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề nguyên hàm luyện thi THPT Quốc gia 2018 - Lê Bá Bảo
Bài viết chuyên đề nguyên hàm được biên soạn bởi thầy Lê Bá Bảo gồm 43 trang nằm trong kế hoạch ôn tập luyện thi THPT Quốc gia 2018 môn Toán. Nội dung tài liệu: Nguyên hàm và các phương pháp xác định nguyên hàm I – Tổng quan lý thuyết 1. Nguyên hàm Cho hàm số f(x) xác định trên K (K là khoảng, đoạn hay nửa khoảng). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F'(x) = f(x) với mọi x ∈ K. Tính chất của nguyên hàm: + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì với mỗi hằng số C, hàm số G(x) = F(x) + C cũng là một nguyên hàm của f(x) trên K. + Nếu F(x) là một nguyên hàm của hàm số f(x) trên K thì mọi nguyên hàm của f(x) trên K đều có dạng F(x) + C, với C là một hằng số. 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm: Mọi hàm số f(x) liên tục trên K đều có nguyên hàm trên K. 4. Bảng nguyên hàm của một số hàm số sơ cấp [ads] II – Phương pháp tính nguyên hàm 1. Phương pháp đổi biến số: Nếu ∫f(u)du = F(u) + C và u = u(x) là hàm số có đạo hàm liên tục thì: ∫f(u(x))u'(x)dx = F(u(x)) + C 2. Phương pháp nguyên hàm từng phần: Nếu hai hàm số u = u(x) và v = v(x) có đạo hàm liên tục trên K thì: ∫u(x)v'(x)dx = u(x)v(x) – ∫u'(x)v(x)dx III – Bài tập tự luận minh họa 1. Nhóm kỹ năng 1. Một số phép biến đổi cơ bản 2. Nhóm kỹ năng 2. Nguyên hàm các hàm số phân thức 3. Nhóm kỹ năng 3. Nguyên hàm từng phần + Dạng 1. I = ∫f(x)sinxdx hoặc I = ∫f(x)cosxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = sinxdx (hoặc cosxdx). + Dạng 2. I = ∫f(x)e^xdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = f(x) và dv = e^x.dx. + Dạng 3. I = ∫f(x)logxdx, trong đó f(x) là đa thức. Phương pháp: Đặt u = logx và dv = f(x)dx 4. Nhóm kỹ năng 4. Đổi biến 5. Nhóm kỹ năng 5. Dùng vi phân IV – Bài tập trắc nghiệm minh họa: Tuyển chọn các bài toán trắc nghiệm nguyên hàm có đáp án và lời giải chi tiết. V – Bài tập trắc nghiệm tự luyện
Hướng dẫn giải một số bài toán nâng cao về ứng dụng của tích phân - Vũ Hồng Quý
Tài liệu gồm 10 trang tuyển tập 8 bài toán ứng dụng của tích phân ở mức độ vận dụng bậc cao kèm theo hướng dẫn giải.
Kỹ thuật CHỌN trong trắc nghiệm tích phân và số phức - Trần Lê Quyền
Một nguyên tắc cơ bản khi xây dựng nên các bài toán đại số chính là: Thiết lập sự cân bằng giữa số ẩn số và số phương trình lập nên từ các dữ kiện. Lấy ý tưởng đó, bài viết này tổng hợp và giới thiệu vài cách xử lí nhanh một số bài toán số phức và tích phân bằng một kiểu chọn đặc biệt. Tôi cố tình không phân chia ra các đề mục để tách biệt giữa số phức và tích phân vì xét dưới góc nhìn này, chúng hoàn toàn giống nhau! [ads]
Bộ câu hỏi tích phân chống Casio có lời giải chi tiết - Đặng Việt Hùng
Tài liệu gồm 12 trang với 35 bài toán tích phân chống Casio có lời giải chi tiết. Tài liệu do thầy Đặng Việt Hùng biên soạn và chia sẻ.