Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 trường Lương Thế Vinh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 lần 2 năm học 2022 – 2023 trường THCS&THPT Lương Thế Vinh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 03 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 trường Lương Thế Vinh – Hà Nội : + Chiều cao của một ngọn hải đăng là bao nhiêu? Biết rằng khi tia nắng mặt trời chiếu qua đỉnh của ngọn hải đăng hợp với mặt đất một góc 35° thì bóng của ngọn hải đăng trên mặt đất dài 20m (làm tròn kết quả đến chữ số thập phân thứ nhất). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Nếu giảm chiều rộng của một mảnh vườn hình chữ nhật đi 3m và tăng chiều dài thêm 8m thì diện tích mảnh vườn giảm đi 54m. Nếu tăng chiều rộng của mảnh vườn thêm 2m và giảm chiều dài đi 4m thì diện tích mảnh vườn tăng thêm 32m². Hãy tính các kích thước của mảnh vườn. + Cho tam giác ABC nhọn, các đường cao BM và CN cắt nhau tại H. 1. Chứng minh tứ giác AMHN nội tiếp một đường tròn và xác định vị trí tâm I của đường tròn đó. 2. Gọi D là một điểm thuộc cạnh BC (D khác B và D khác C). Đường tròn ngoại tiếp tam giác BDN và đường tròn ngoại tiếp tam giác CDM cắt nhau tại điểm thứ hai là E. Chứng minh E thuộc đường tròn ngoại tiếp tam giác AMN. 3. Gọi K là một điểm di động trên nửa đường tròn đường kính BC (cung chứa điểm M) và Q là chân đường vuông góc hạ từ K xuống BC. Tìm vị trí điểm K để tổng KQ + BQ đạt giá trị lớn nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Đà Nẵng
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Đà Nẵng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đà Nẵng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Đà Nẵng : + Quãng đường AB gồm một đoạn lên dốc và một đoạn xuống dốc. Một người đi xe đạp từ A đến B hết 16 phút và đi từ B về A hết 14 phút. Biết vận tốc lúc lên dốc là 10 km/h, vận tốc lúc xuống dốc là 15 km/h (vận tốc lên dốc và xuống dốc lúc đi và về như nhau). Tính quãng đường AB. + Cho tam giác ABC nội tiếp trong đường tròn tâm O đường kính AB. Trên cung nhỏ BC của đường tròn (O) lấy điểm D (không trùng với B và C). Gọi H là chân đường vuông góc kẻ từ C đến AB (H thuộc AB) và E là giao điểm của CH với AD. a) Chứng minh rằng tứ giác BDEH là tứ giác nội tiếp. b) Chứng minh rằng AB^2 = AE.AD = BH.BA. c) Đường thẳng qua E song song với AB, cắt BC tại F. Chứng minh rằng CDF = 90 độ và đường tròn ngoại tiếp tam giác OBD đi qua trung điểm của đoạn CF. [ads] + Cho hàm số y = 1/2.x2. a) Vẽ đồ thị (P) của hàm số đã cho. b) Đường thẳng y = 8 cắt đồ thị (P) tại hai điểm phân biệt A và B, trong đó điểm B có hoành độ dương. Gọi H là chân đường cao hạ từ A của tam giác OAB, với O là gốc toạ độ. Tính diện tích tam giác AHB (đơn vị đo trên các trục toạ độ là xentimet).
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hòa Bình
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Hòa Bình tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hòa Bình gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hòa Bình : + Một chiếc ti vi giảm giá hai lần, mỗi lần giảm giá 10% so với giá đang bán, sau khi giảm giá hai lần thì giá còn lại là 16 200 000 đồng. Hỏi giá bán ban đầu của chiếc ti vi là bao nhiêu? [ads] + Cho tam giác nhọn ABC (AB khác AC) có các đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh rằng: Tứ giác AEHF nội tiếp. 2) Chứng minh rằng: ADE = ADF. 3) Chứng minh rằng: Đường tròn ngoại tiếp tam giác EDF đi qua trung điểm M của cạnh BC. + Cho tam giác ABC vuông tại A, có AB = 6cm, góc ABC = 60 độ. Tính chu vi tam giác.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Cao Bằng
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Cao Bằng tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Bác An đi x ô tô từ Cao Bằng đến Hải Phòng. Sau khi đi được nửa quãng đường, bác An cho xe tăng vận tốc thêm 5 km/h nên thời gian đi nửa quãng đường sau ít hơn thời gian đi nửa quãng đường đầu là 30phút. Hỏi lúc đầu bác An đi xe với vận tốc bao nhiêu? Biết rằng khoảng cách từ Cao Bằng đến Hải Phòng là 360 km. [ads] + Qua điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB và AC của đường tròn (B và C là các tiếp điểm). a) Chứng minh ABOC là tứ giác nội tiếp. b) Kẻ đường thẳng qua diểm A cắt đường tròn (O) tại hai điểm E và F sao cho E nằm giữa A và F. Chứng minh BE.CF = BF.CE. + Cho tam giác ABC vuông tại A.Biết AB = 6cm, AC = 8cm. a) Tính độ dài cạnh BC. b) Kẻ đường cao AH. Tính độ dài đoạn AH.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Lạng Sơn
Thứ … ngày … tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Lạng Sơn tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lạng Sơn gồm có 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho nửa đường tròn (O) đường kính AB. Trên nửa đường tròn (O) lấy điểm C sao cho CA < CB. Trên đoạn OB lấy điểm M sao cho M nằm giữa O và B. Đường thẳng đi qua M vuông góc với AB cắt tia AC tại N, cắt BC tại E. a) Chứng minh tứ giác ACEM nội tiếp trong một đường tròn. b) Tiếp tuyến của nửa đường tròn (O) tại C cắt đường thẳng MN tại F. Chứng minh ∆CEF cân. c) Gọi H là giao điểm của NB với nửa đường tròn (O). Chứng minh HF là tiếp tuyến của nửa đường tròn (O). [ads] + Một mảnh vườn hình chữ nhật có chu vi là 160m và diện tích là 1500m2. Tính chiều dài và chiều rộng của mảnh vườn đó. + Tìm tham số m để phương trình x2 – 5x + m – 3 = 0 có hai nghiệm phân biệt x1; x2 thỏa mãn x1^2 – 2×1.x2 + 3×2 = 1.