Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán

Tài liệu gồm 57 trang, tuyển chọn 367 câu hỏi và bài toán trắc nghiệm tương tự đề minh họa tốt nghiệp THPT 2022 môn Toán, giúp học sinh lớp 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn tài liệu phát triển đề minh họa ôn thi TN THPT 2022 môn Toán: + Cho hàm số y = f(x) xác định trên R có f(−3) > 8, f(4) > 9 2, f(2) < 1 2. Biết rằng hàm số y = f0(x) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số y = 2f(x) − (x − 1)2 có bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho hai điểm A(1; 3; 0), B(−3; 1; 4) và đường thẳng ∆ : x − 2 −1 = y + 1 1 = z − 2 3. Xét khối nón (N) có đỉnh có tọa độ nguyên thuộc đường thẳng ∆ và ngoại tiếp mặt cầu đường kính AB. Khi (N) có thể tích nhỏ nhất thì tung độ đỉnh của khối nón (N) bằng? + Cho hàm số f (x) = x4 + ax3 + bx2 + cx + d (a, b, c, d ∈ R) có ba điểm cực trị là −1; 1; 2. Hàm số g (x) = mx3 + nx2 + px + q (m, n, p, q ∈ R) là hàm số đạt cực trị tại −1; 1 và và có đồ thị đi qua hai điểm cực trị có hoành độ −1; 1 của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f (x) và y = g (x) bằng? + Cho hai hộp đựng bi, đựng 2 loại bi là bi trắng và bi đen, tổng số bi trong hộp là 20 bi và hộp thứ nhất đựng ít bi hơn hộp thứ hai. Lấy ngẫu nhiên từ mỗi hộp 1 bi. Cho biết xác suất để lấy được 2 bi đen là 55 84, tính xác suất để lấy được 2 bi trắng? + Cho hình lăng trụ đứng ABC · A0B0C0 có đáy ABC là tam giác vuông cân tại B và AB = 4 (tham khảo hình bên). A B C A0 B0 C0. Khoảng cách từ C đến mặt phẳng (ABB0A0) bằng?

Nguồn: toanmath.com

Đọc Sách

Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Nội dung Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán dựa trên nền tảng của chương trình học và kiến thức cơ bản trong sách giáo khoa. Đề thi được xây dựng với mục tiêu giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phân tích một cách logic và tổng hợp thông tin. Bên cạnh việc đánh giá kiến thức, đề thi cũng tập trung vào việc khuyến khích học sinh phát triển khả năng sáng tạo, tự tin và kiên nhẫn khi giải các bài toán khó. Các câu hỏi trong đề thi không chỉ yêu cầu kiến thức mà còn đòi hỏi học sinh có khả năng áp dụng kiến thức vào các tình huống thực tế và bài toán đa chiều. Với sự phong phú và đa dạng về nội dung, đề thi tham khảo môn Toán sẽ giúp học sinh tự tin và sẵn sàng tham gia kỳ thi quan trọng. Đồng thời, đề thi cũng là công cụ hữu ích giúp giáo viên đánh giá năng lực học sinh và điều chỉnh phương pháp dạy học phù hợp.
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Nội dung Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Tài liệu được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, bao gồm 39 trang trình bày lời giải chi tiết và phân tích sâu một số bài toán vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020. Cụ thể, các bài toán được phân tích bao gồm: câu 38, câu 43, câu 46, câu 48, câu 49, và câu 50. Thông qua việc phân tích chi tiết các bài toán này, tài liệu giúp học sinh hiểu rõ hơn về cách tiếp cận và giải quyết các dạng toán vận dụng - vận dụng cao trong các bài toán thực tế.
Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán
Nội dung Phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Giới thiệu tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Giới thiệu tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán Sytu xin gửi đến quý thầy cô giáo và các em học sinh tài liệu phân tích và bình luận đề tham khảo THPTQG 2020 môn Toán, được biên soạn bởi thầy giáo Nguyễn Xuân Chung. Tài liệu này bao gồm 13 trang chi tiết, giúp các bạn học sinh hiểu rõ hơn về cấu trúc đề thi cũng như cách thức giải các câu hỏi trong đề. Đây thực sự là một công cụ hữu ích để các em chuẩn bị tốt cho kỳ thi sắp tới.