Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Việt Trì - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp thành phố năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Việt Trì, tỉnh Phú Thọ; đề thi gồm hai phần: phần trắc nghiệm khách quan: 16 câu – 08 điểm và phần tự luận: 04 câu – 12 điểm, thời gian làm bài: 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Việt Trì – Phú Thọ : + Cho tam giác ABC nhọn, đường cao BE CF E AC F AB. Gọi M là trung điểm của BC. Trên tia đối của tia MF lấy điểm D sao cho MF MD. a) Chứng minh CD BF và CD BF. b) Lấy điểm P bất kì nằm giữa B và F, trên tia đối của tia MP lấy điểm Q sao cho MP MQ. Chứng minh DQC thẳng hàng. c) Trên tia đối của tia EF lấy điểm K, trên tia đối của tia FE lấy điểm I sao cho EK FI. Chứng minh tam giác MIK cân. + Anh đọc quyển sách trong hai ngày. Ngày thứ nhất Anh đọc được 1 7 quyển sách. Ngày thứ hai Anh đọc được 7 12 số trang sách còn lại của quyển sách đó. Hỏi sau hai ngày Anh đọc được bao nhiêu phần quyển sách? + Cho ∆ABC có AB AC. Kẻ BD vuông góc với AC tại D kẻ CE vuông góc với AB tại E. Kết luận nào sau đây là đúng?

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Quảng Ninh - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Quảng Ninh, tỉnh Quảng Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Quảng Ninh – Quảng Bình : + Chứng minh rằng với mọi số nguyên dương m và n thì mn(m2 – 1)(n2 + 2) chia hết cho 9. + Cho đa thức f(x), biết rằng khi chia f(x) cho x – 1 thì dư 3, chia cho x – 2 thì dư 5, chia cho (x – 1)(x – 2) thì được thương là 2x và còn dư. Tìm đa thức f(x). + Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC tại H, tia phân giác của HAC cắt BC tại D. a) Chứng minh BA = BD. b) Trên tia đối của tia AB lấy điểm K sao cho AK = HD. Kẻ DE vuông góc với AC tại E. Chứng minh KE // AD. c) Gọi F là giao điểm của HK với AD, chứng minh F là trung điểm của đoạn thẳng HK.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số nguyên. Biết rằng f(2), f(0), f(-2) đồng thời chia hết cho 3. Chứng minh a, b, c đều chia hết cho 3. + Tổng số học sinh ba lớp 7A, 7B, 7C của một trường THCS là 94 học sinh. Nếu chuyển 1 học sinh từ lớp 7A và 3 học sinh từ lớp 7B sang lớp 7C thì số học sinh của ba lớp 7A, 7B, 7C lần lượt tỉ lệ nghịch với 4; 5; 3. Tính số học sinh lúc đầu của mỗi lớp. + Cho tam giác ABC nhọn (AB < AC), kẻ tia phân giác AI (I thuộc BC) của góc BAC. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh IB = ID. b) Tia DI cắt tia AB tại E, tia AI cắt tia EC tại H. Chứng minh H là trung điểm của EC. 2) Cho tam giác ABC vuông tại C, kẻ CH vuông góc với AB (H thuộc AB). Chứng minh AC + BC < AB + CH.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho các số nguyên dương m, n và p là số nguyên tố thỏa mãn: p/(m – 1) = (m + n)/p. Chứng minh rằng: p2 = n + 2. + Biết f(x) chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f(x). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), trên tia đối của tia CA lấy điểm K sao cho CK = BD; DK cắt BC tại I. Hạ DP, KQ vuông góc với BC lần lượt tại P và Q. 1. Chứng minh rằng: BDP = CKQ; I là trung điểm DK. 2. Đường vuông góc với DK tại I cắt AM tại S. Chứng minh: SC vuông góc với AK. 3. Đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh rằng: MD + ME ≥ AD + AE.