Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG cụm trường lần 1 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An

Nội dung Đề HSG cụm trường lần 1 lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Yên Thành Nghệ An Bản PDF - Nội dung bài viết Đề HSG cụm trường lần 1 Toán lớp 8 năm 2022 - 2023 Yên Thành, Nghệ An Đề HSG cụm trường lần 1 Toán lớp 8 năm 2022 - 2023 Yên Thành, Nghệ An Chúng tôi xin gửi đến các thầy cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi cụm trường lần 1 môn Toán cho năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Một số câu hỏi trong đề thi bao gồm: Cho hình vuông ABCD, có độ dài mỗi cạnh bằng a. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc với AB và MF vuông góc với AD. a) Chứng minh rằng DE = CF. b) Chứng minh rằng ba đường thẳng DE, BF, CM đồng quy. c) Xác định vị trí của điểm M để diện tích tứ giác AEMF đạt giá trị lớn nhất và tìm giá trị lớn nhất đó. Cho 17 điểm nằm trong mặt phẳng, không có 3 điểm nào thẳng hàng. Nối các điểm này bằng các đoạn thẳng và tô màu xanh, đỏ hoặc vàng. Chứng minh rằng tồn tại một tam giác có các cạnh cùng màu. Cho biểu thức \(3x^2 + 3x^2 + 3x^2\). Tìm điều kiện xác định và rút gọn biểu thức Q. Tìm số hữu tỉ x sao cho biểu thức \(2x^2 + 4x^2 + x\) có giá trị là một số nguyên dương. Đây là một số câu hỏi trong đề thi Toán lớp 8 HSG cụm trường lần 1 năm học 2022 - 2023 tại Yên Thành, Nghệ An. Hy vọng các em sẽ tự tin và thành công khi giải quyết các bài toán này. Chúc các em học tốt!

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. a) Chứng minh: EA.EB = ED.EC. b) Kẻ đường thẳng đi qua M cắt các cạnh EB, EC theo thứ tự ở P và Q sao cho MP = MQ. Gọi I là trung điểm của BC. Chứng minh rằng: MI vuông góc với PQ. + Ba bạn An, Giáp, Mai hẹn gặp nhau tại nhà bạn Giáp, biết rằng nhà bạn An ở vị trí A, nhà bạn Giáp ở vị trí G và nhà bạn Mai ở vị trí M (được mô tả như hình vẽ). Biết rằng tứ giác ABCD là hình vuông và M là trung điểm của CD. Quãng đường bạn Mai đi từ nhà tới nhà bạn Giáp là 2 km. Hỏi bạn An phải đi quãng đường ngắn nhất từ nhà tới nhà bạn Giáp là bao nhiêu kilômét để gặp Giáp và Mai? + Để lập đội tuyển năng khiếu về bóng chuyền của một trường thầy thể dục đưa ra quy định tuyển chọn như sau: Mỗi bạn dự tuyển sẽ được phát bóng 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 20 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu?
Đề thi Olympic Toán 8 năm 2023 - 2024 phòng GDĐT Thanh Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Thanh Oai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Thanh Oai – Hà Nội : + Gieo hai con xúc xắc cân đối, đồng chất và giống hệt nhau. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc này trong cùng một lần gieo là số lớn hơn 8 2. Tìm tất cả số nguyên tố p, q sao cho A 2 2 p pq q 3 là bình phương của một số tự nhiên. + Cho tam giác ABC nhọn có các đường cao AD, BE, CF cắt nhau tại H. Gọi M, N lần lượt là trung điểm của BC, AC; gọi I, P lần lượt là điểm đối xứng của H qua D và M. a) Chứng minh rằng tứ giác BIPC là hình thang cân. b) Trên đoạn thẳng AP lấy điểm O sao cho OP = OC. Gọi G là giao điểm của OH và AM. Chứng minh ba điểm B, G, N thẳng hàng. c) Gọi Q là giao điểm của AH và EF. Chứng minh rằng 2 AQ DB DC AD HQ. + Tìm đa thức f x biết f x chia cho x 3 dư 5 f x chia cho x 5 dư 7 f x chia cho x 3 5 được thương là 2x và còn dư.
Đề thi chọn học sinh giỏi Toán 8 năm 2023 - 2024 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi môn Toán 8 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 02 trang với 05 bài toán hình thức tự luận, thời gian làm bài 120 phút. Trích dẫn Đề thi chọn học sinh giỏi Toán 8 năm 2023 – 2024 sở GD&ĐT Nam Định : + Một doanh nghiệp tư nhân ở thành phố A chuyên kinh doanh các loại máy vi tính. Hiện nay, doanh nghiệp đang tập trung chiến lược vào kinh doanh máy tính với chi phí mua vào là 23 triệu đồng và bán ra với giá 27 triệu đồng mỗi chiếc. Với giá bán này thì dự kiến số lượng máy tính mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng máy tính đang bán chạy này, doanh nghiệp dự định giảm giá bán và ước lượng rằng nếu cứ giảm 100 nghìn đồng mỗi chiếc thì số lượng máy tính bán ra trong một năm sẽ tăng thêm 20 chiếc. Vậy doanh nghiệp phải bán với giá mới là bao nhiêu để sau khi giảm giá lợi nhuận thu được sẽ cao nhất? + Ở một trường THCS X, trên một khu đất trống hình chữ nhật, nhà trường dự định lấy 2 1666m đất làm một sân bóng đá hình chữ nhật cho học sinh với kích thước 30m 45m. Theo thiết kế, người ta làm một hành lang có bề rộng bằng nhau bao quanh sân bóng đá (minh họa như hình vẽ). Hãy tính bề rộng của lối đi hành lang. + Cho đa giác đều gồm 2023 cạnh. Người ta sơn các đỉnh của đa giác bằng hai màu xanh và đỏ. Chứng minh rằng tồn tại ba đỉnh được sơn cùng một màu tạo thành một tam giác cân.
Đề thi HSG Toán 8 vòng 2 năm 2023 - 2024 phòng GDĐT Xuân Trường - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi chọn học sinh giỏi cấp huyện môn Toán 8 THCS vòng 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Xuân Trường, tỉnh Nam Định. Trích dẫn Đề thi HSG Toán 8 vòng 2 năm 2023 – 2024 phòng GD&ĐT Xuân Trường – Nam Định : + Một trường THCS có tổ chức cho các em học sinh khối 8 và khối 9 đi trải nghiệm bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một xe ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiêu xe ô tô và có tất cả bao nhiêu học sinh đi trải nghiệm? Biết rằng số học sinh trên mỗi xe không vượt quá 32 em. + Thầy giáo viết lên bảng các số tự nhiên liên tiếp từ 1 đến 2024. Hai bạn học sinh thực hiện trò chơi như sau: cứ một bạn thực hiện việc xóa đi hai số bất kỳ trên bảng thì bạn còn lại sẽ viết thay vào đó một số là giá trị tuyệt đối của hiệu hai số vừa xóa. Trò chơi chỉ kết thúc khi trên bảng còn đúng một số. Hỏi số cuối cùng trên bảng có thể là số 2023 được không? + Cho hình vẽ dưới đây là bản thiết kế thi công tầng 1 của một ngôi nhà hai tầng mái bằng. Biết ABC BAH AHG HGF GFE FED EDC DCB 90 AB BC m 6 18 DE m 6 GF m EF m GH DC m 4 7 4. Biết giá thiết kế mỗi mét vuông sàn là 120 nghìn đồng (mỗi sàn là một tầng). Hỏi bác chủ nhà phải trả bao nhiêu tiền để mua bản thiết kế của cả ngôi nhà đó?