Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG cấp tỉnh Toán 12 năm 2020 - 2021 trường chuyên Bắc Ninh

Ngày … tháng 01 năm 2021, trường THPT chuyên Bắc Ninh, tỉnh Bắc Ninh tổ chức kỳ thi chọn đội tuyển học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn HSG cấp tỉnh Toán 12 năm 2020 – 2021 trường chuyên Bắc Ninh được biên soạn theo hình thức đề thi 100% trắc nghiệm, đề gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút. Trích dẫn đề chọn HSG cấp tỉnh Toán 12 năm 2020 – 2021 trường chuyên Bắc Ninh : + Cho hình trụ (T) có (C) và (C’) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 10 x 20 (như hình vẽ dưới đây). Tính diện tích xung quanh của khối trụ (T). + Một hạt ngọc trai hình cầu có bán kính R được bọc trong một hộp trang sức dạng hình nón ngoại tiếp mặt cầu như hình vẽ. Hỏi nhà sản xuất phải thiết kế hộp trang sức hình nón có chiều cao h như thế nào để hộp quà đó có thể tích nhỏ nhất. + Cho bốn số a, b, c, d theo thứ tự đó tạo thành cấp số nhân với công bội khác 1. Biết tổng ba số hạng đầu bằng 148/9, đồng thời theo thứ tự đó chúng lần lượt là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng. Tính giá trị biểu thức T = a – b – c + d.

Nguồn: toanmath.com

Đọc Sách

Đề minh họa kỳ thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7