Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn

Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.

Nguồn: toanmath.com

Đọc Sách

Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hạ Long Quảng Ninh
Nội dung Đề cuối học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT chuyên Hạ Long Quảng Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 101). Trích dẫn Đề cuối kì 1 Toán lớp 11 năm 2023 – 2024 trường THPT chuyên Hạ Long – Quảng Ninh : + Số lượng khách hàng nữ mua hàng thời trang trong một ngày của một cửa hàng được thống kê trong bảng tần số ghép nhóm sau. Cỡ mẫu của bảng tần số ghép nhóm là? + Tìm mệnh đề đúng trong các mệnh đề sau: A. Nếu hai mặt phẳng (a) và (b) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng (a) đều song song với mọi đường thẳng nằm trong mặt phẳng (b). B. Nếu hai đường thẳng song song với nhau lần lượt nằm trong hai mặt phẳng phân biệt (a) và (b) thì (a) và (b) song song với nhau. C. Nếu hai mặt phẳng (a) và (b) song song với nhau thì mọi đường thẳng nằm trong mặt phẳng (a) đều song song với mặt phẳng (b). D. Qua một điểm nằm ngoài mặt phẳng cho trước, ta vẽ được một và chỉ một đường thẳng song song với mặt phẳng cho trước đó. + Ông H có một căn hộ cho thuê, năm đầu tiên cho thuê với giá 60 triệu đồng/năm, kể từ năm thứ hai trở đi giá cho thuê mỗi năm tăng so với năm liền trước đó 5%. Hỏi sau 5 năm, tổng số tiền ông H thu về từ cho thuê căn hộ đó là bao nhiêu?
Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Lê Quý Đôn TP HCM
Nội dung Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Lê Quý Đôn TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kì 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Tư ngày 13 tháng 12 năm 2023. Trích dẫn Đề học kì 1 Toán lớp 11 năm 2023 – 2024 trường THPT Lê Quý Đôn – TP HCM : + Cho chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CD, SD. a) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD). b) Tìm giao điểm H của BP và mặt phẳng (SAC). c) Chứng minh rằng NP // (SBC). d) Gọi Q là giao điểm của SA với (MNP). Tính tỉ số SQ/SA. + Khi nghiên cứu về một loại virus, người ta nhận thấy cứ sau mỗi phút, số lượng virus tăng lên gấp ba lần trước đó. Giả sử ban đầu có 5 con virus, hãy tính số lượng virus có sau 11 phút. + Người ta trồng 3003 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …. Cứ như thế, số cây ở hàng sau kề trước 1 cây. Hỏi có tất cả bao nhiêu hàng cây được trồng?
Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Võ Thị Sáu TP HCM
Nội dung Đề học kì 1 (HK1) lớp 11 môn Toán năm 2023 2024 trường THPT Võ Thị Sáu TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Võ Thị Sáu, quận Bình Thạnh, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Năm ngày 14 tháng 12 năm 2023. Trích dẫn Đề học kỳ 1 Toán lớp 11 năm 2023 – 2024 trường THPT Võ Thị Sáu – TP HCM : + Một mảnh vườn hình đa giác có chu vi bằng 63 m, độ dài các cạnh là các số nguyên lập thành một cấp số nhân có công bội bằng 2. Tìm số cạnh của đa giác đó. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM = 1/3.AD. + Mặt phẳng (P) đi qua điểm M song song với AC và SD lần lượt cắt CD, SC, SA tại các điểm N, E, F. Chứng minh tứ giác MNEF là hình bình hành.