Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn

Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh sở GD&ĐT Lạng Sơn Đề học sinh giỏi Toán lớp 9 cấp tỉnh sở GD&ĐT Lạng Sơn Chào đón quý thầy cô và các em học sinh lớp 9! Đề thi chọn học sinh giỏi Toán cấp tỉnh năm học 2022 – 2023 sở GD&ĐT Lạng Sơn đã được công bố. Hãy cùng Sytu khám phá những bài toán thú vị sau đây: 1. Cho tam giác ABC nhọn, nội tiếp (O), AB < AC. Phân giác trong của góc BAC cắt BC tại D và cắt (O) tại điểm thứ hai P. Gọi M là giao điểm của OP và BC; F đối xứng với D qua M. Lấy điểm H nằm trên AO và E nằm trên AD sao cho HD; FE cùng vuông góc với BC. a. Chứng minh rằng tam giác AHD và PFE là các tam giác cân. b. Chứng minh tứ giác BHCK nội tiếp trong một đường tròn (O1), với K là giao điểm của HD và FP. c. Chứng minh rằng AQ là tiếp tuyến của đường tròn (O), với Q là giao điểm của HT và BC. 2. Tìm các số nguyên dương x, y, z thỏa mãn: 3x² – 9y² + 4z² + 6y²z² = 243. 3. Trong một đa giác đều có 2023 đỉnh, đánh dấu các đỉnh bằng chữ số 0 hoặc 1. Chứng minh rằng luôn chọn ra được ba đỉnh giống nhau tạo thành tam giác cân. Hãy cùng thử sức và rèn luyện kỹ năng giải bài toán của mình qua đề thi học sinh giỏi Toán lớp 9 cấp tỉnh. Chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Lạng Sơn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Lạng Sơn; kỳ thi được diễn ra vào ngày 18 tháng 03 năm 2021; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Lạng Sơn : + Cho tam giác đều ABC nội tiếp đường tròn O R. Gọi H là một điểm di động trên đoạn thẳng OA (H khác O và HA HO). Đường thẳng đi qua H và vuông góc với OA cắt cung nhỏ AB tại M. Gọi K là hình chiếu vuông góc của M trên OB. a) Chứng minh BMK MAB. b) Các tiếp tuyến của O R tại A và B cắt tiếp tuyến tại M của O R lần lượt tại D và E OD OE cắt AB lần lượt tại F và G. Chứng minh rằng: OE OG OF OD. c) Tìm vị trí điểm H để chu vi tam giác MAB đạt giá trị lớn nhất. + Cho abc là các số thực dương thoả mãn 2 2 2 1 1 1 6 abc. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 2 2 2 b c c a a b Q a b c b c a c a b. + Cho mỗi điểm trên mặt phẳng được tô bởi một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại một tam giác mà ba đỉnh và trọng tâm cùng màu.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Phú Yên
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Phú Yên tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Phú Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Đắk Lắk
Ngày 30 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Đắk Lắk gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi HSG tỉnh Toán 9 năm học 2020 - 2021 sở GDĐT Quảng Bình
Đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có đáp án và lời giải chi tiết, kỳ thi được tổ chức vào ngày 08 tháng 12 năm 2020. Trích dẫn đề thi HSG tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Quảng Bình : + Số nguyên dương n được gọi là số điều hòa nếu tổng các bình phương của các ước dương của nó (kể cả 1 và n) bằng (n + 3)^2. Chứng minh rằng nếu pq (với p và q là các số nguyên tố khác nhau) là số điều hòa thì pq + 2 là số chính phương. + Trong mặt phẳng tọa độ Oxy, cho đường thẳng đi qua điểm A(1;4) và cắt các tia Ox, Oy lần lượt tại B và C (khác O). a. Viết phương trình đường thẳng (d) sao cho biểu thức OA + OB + OC đạt giá trị nhỏ nhất. b. Tính giá trị lớn nhất của biểu thức P = OB.OC/BC. + Tìm tất cả các cặp số nguyên dương (x;y) thỏa mãn.