Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương

Nội dung Đề thi Olympic Toán 7 năm 2017 2018 phòng GD ĐT Kinh Môn Hải Dương Bản PDF - Nội dung bài viết Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Đề thi Olympic Toán 7 năm 2017-2018 phòng GD&ĐT Kinh Môn-Hải Dương Chào mừng đến với Đề thi Olympic Toán lớp 7 năm 2017-2018 từ phòng GD&ĐT Kinh Môn - Hải Dương. Bộ đề thi này bao gồm đề thi, đáp án chi tiết và lời giải, cung cấp hướng dẫn chấm điểm một cách chi tiết. Dưới đây là một số câu hỏi trích dẫn từ đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương: Cho tam giác ABC có góc A nhỏ hơn 90 độ. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ABM và ACN. Hãy chứng minh rằng: MC = BN và BN = CM. Hãy kẻ AH song song với BC. Chứng minh rằng AH đi qua trung điểm của MN. Cho tam giác ABC vuông cân tại B. Điểm M nằm bên trong tam giác sao cho MA: MB: MC = 1: 2: 3. Hãy tính số đo AMB? Cho biết (x - 1).f(x) = (x + 4).f(x + 8) với mọi x. Chứng minh rằng f(x) có ít nhất bốn nghiệm. Đề thi Olympic Toán lớp 7 năm 2017-2018 phòng GD&ĐT Kinh Môn - Hải Dương chắc chắn sẽ đem đến cho các em học sinh những thách thức và cơ hội để rèn luyện kỹ năng toán học của mình. Chúc các em thành công và phát triển trong hành trình học tập của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Bắc Giang
Ngày 12 tháng 03 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Giang tổ chức kỳ thi chọn học sinh giỏi văn hóa cấp thành phố môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi HSG huyện Toán 7 năm 2020 - 2021 phòng GDĐT Lục Ngạn - Bắc Giang
Thứ Năm ngày 18 tháng 03 năm 2021, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2020 – 2021. Đề thi HSG huyện Toán 7 năm 2020 – 2021 phòng GD&ĐT Lục Ngạn – Bắc Giang (bảng B) gồm 01 trang với 05 bài toán dạng tự luận, thang điểm 20, thời gian làm bài 120 phút.
Đề thi HSG Toán 7 năm 2020 - 2021 phòng GDĐT thành phố Sầm Sơn - Thanh Hóa
Đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 7 năm 2020 – 2021 phòng GD&ĐT thành phố Sầm Sơn – Thanh Hóa : + Số M được chia thành ba phần tỉ lệ với nhau như 0,25 : 0,375 : 0,1(3). Tìm số M biết rằng tổng các bình phương của ba phần đó bằng 4564. + Tìm các giá trị nguyên của x để biểu thức N = 2 3 4 1 2 x x x có giá trị nguyên. + Cho tam giác ABC có 0 ABC ACB 30. Trên tia đối của tia AC lấy điểm D sao cho AD = AC. Lấy điểm E thuộc cạnh CD sao cho 0 DBE = 30. Gọi P là điểm trên cạnh BC sao cho BP = BD. Vẽ PQ vuông góc với CD. a) Chứng minh rằng tam giác AEB là tam giác vuông. b) Chứng minh rằng 2 2 2 1 1 1 BE BC BD. c) Chứng minh rằng EB = EQ. d) So sánh hai đoạn thẳng AE và AQ.
Đề thi HSG Toán 7 năm 2019 - 2020 phòng GDĐT Lục Nam - Bắc Giang
Thứ Hai ngày 01 tháng 06 năm 2020, phòng Giáo dục và Đào tạo Lục Nam, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2019 – 2020. Đề thi HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi HSG Toán 7 năm 2019 – 2020 phòng GD&ĐT Lục Nam – Bắc Giang : + Một cửa hàng có ba cuộn vải với tổng chiều dài ba cuộn vải là 186 m. Giá tiền mỗi mét vải của ba cuộn là như nhau. Sau khi bán được một ngày, cửa hàng còn lại 2/3 cuộn vải thứ nhất; 1/3 cuộn vải thứ hai; 3/5 cuộn vải thứ ba. Số tiền bán được của ba cuộn tỉ lệ với 2 : 3 : 2. Tính số vải đã bán được của mỗi cuộn vải trong ngày đó. + Tìm các số nguyên dương x, y, z sao cho: x + y + z = xyz. + Biết n là số nguyên không chia hết cho 2 và 3. Chứng minh 4n^2 + 3n + 5 chia hết cho 6.