Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 năm 2022 - 2023 phòng GDĐT Yên Thành - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Yên Thành, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2022 – 2023 phòng GD&ĐT Yên Thành – Nghệ An : + Tháng 2 năm 2023 hai tổ công nhân của công ty may Việt Nhật (đóng trên địa bàn huyện Yên Thành) đã làm được 900 sản phẩm. Để chào mừng Đại hội công đoàn huyện Yên Thành nhiệm kì 2023 – 2028, sang tháng 3 công ty may phát động phong trào thi đua lao động chào mừng Đại hội nên tổ I đã làm vượt mức 15% và tổ II đã làm vượt mức 20% so với tháng 2, do đó trong tháng 3 cả hai tổ làm được 1050 sản phẩm. Hỏi trong tháng 2 mỗi tổ công nhân đã làm được được bao nhiêu sản phẩm? + Ngày mùa sắp đến mẹ bạn Hoa mua một cái thùng tôn dùng để đựng lúa có nắp đậy dạng hình trụ với đường kính đáy 1,2 m và chiều cao 1,8 m. Em hãy tính diện tích toàn phần của thùng đựng lúa đó? (lấy 𝜋 ≈ 3,14). + Cho đường tròn tâm O bán kính R và dây BC cố định không đi qua tâm. Qua điểm A thay đổi trên tia đối của tia BC vẽ các tiếp tuyến AM, AN với đường tròn (A khác B; M, N là các tiếp điểm) sao cho tia AC nằm giữa 2 tia AM và AO. Gọi H là trung điểm của BC, K là giao điểm của AO và MN. a. Chứng minh rằng AMON là tứ giác nội tiếp. b. Chứng minh c. Chứng minh rằng khi A thay đổi trên tia đối của tia BC thì đường thẳng MN luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra đầu năm Toán 9 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Dịch Vọng, thành phố Hà Nội. Trích dẫn Đề kiểm tra đầu năm Toán 9 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ công nhân được giao làm một số sản phẩm và dự định sản xuất 50 sản phẩm mỗi ngày. Trên thực tế có một số công nhân phải nghỉ việc do mắc Covid – 19 nên mỗi ngày tổ công nhân sản xuất được ít hơn 10 sản phẩm so với kế hoạch đề ra, do đó hoàn thành công việc chậm 1 ngày. Hỏi tổ công nhân đó được giao làm bao nhiêu sản phẩm? + Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. a) Chứng minh tam giác ABC đồng dạng tam giác HBA. b) Cho AB = 3cm, BH = 1,8cm. Tính độ dài BC và AC. c) Điểm M di chuyển trên cạnh AC. Vẽ AD vuông góc BM tại D. Chứng minh BD.BM = BH.BC. d) Tìm vị trí điểm M trên cạnh AC để HD // AB. + Cho các số thực dương x và y thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức P = x2y2(x2 + y2).
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Xuân Đỉnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Xuân Đỉnh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022.
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 07 tháng 10 năm 2022.
Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.