Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 7 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 7 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Nhân dịp nghỉ lễ ngày giải phóng miền Nam 30/04, một trường THCS lập kế hoạch cho 3 nhóm học sinh khối 7 tham gia đi thăm quê Bác. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh của nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm. + Cho tam giác ABC có góc A nhỏ hơn 90°. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ đoạn thẳng AM sao cho AM vuông góc AB và AM = AB. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ đoạn thẳng AN sao cho AN vuông góc AC và AN = AC. a) Chứng minh rằng: Tam giác AMC = tam giác ABN. b) Chứng minh: BN vuông góc CM. c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AH đi qua trung điểm của MN. + Trong một bảng ô vuông gồm có 5 x 5 vuông, người ta viết vào mỗi ô vuông chỉ một trong 3 số 1; 0; -1. Chứng minh rằng trong các tổng của 5 số theo mỗi cột, mỗi hàng, mỗi đường chéo phải có ít nhất hai tổng số bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Gia Viễn, tỉnh Ninh Bình; kỳ thi được diễn ra vào ngày 30 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho đa thức 2 Q x ax bx c 4. Chứng minh rằng nếu đa thức Q x nhận 2 và -2 là nghiệm thì a và c là hai số đối nhau. + Cho ∆ABC vuông tại A (AB < AC), D là trung điểm của BC, trên tia đối của tia DA lấy điểm E sao cho DE DA. Gọi H và K thứ tự là chân đường vuông góc hạ từ B và C xuống đường thẳng AE, M là chân đường vuông góc hạ từ D xuống AC. a) Chứng minh BK CH. b) Chứng minh CD KM. c) Từ E kẻ đường thẳng vuông góc với BC tại P và cắt BH tại N. Chứng minh ba điểm D, M, N thẳng hàng. d) Giả sử 0 ACB 36 tia phân giác của ACB cắt AD tại F. Chứng minh tam giác CEF là tam giác cân. + Một cái hộp đựng 60 quả bóng giống nhau, gồm ba màu: màu đỏ, màu xanh và màu vàng. Trong đó có 18 quả bóng màu đỏ và 25 quả bóng màu vàng. Hỏi cần phải lấy ra ngẫu nhiên ít nhất bao nhiêu quả bóng để chắc chắn rằng lấy ra được 2 quả bóng xanh?
Đề học sinh giỏi Toán 7 năm 2022 - 2023 trường THCS Ba Đồn - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS Ba Đồn, thị xã Ba Đồn, tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 trường THCS Ba Đồn – Quảng Bình : + Một trường THCS có ba lớp 7, tổng số học sinh hai lớp 7A, 7B là 85 em, Nếu chuyển 10 học sinh từ lớp 7A sang lớp 7C thì số học sinh ba lớp 7A, 7B, 7C tỉ lệ thuận với 7; 8; 9. Hỏi lúc đầu mỗi lớp có bao nhiêu học sinh? + Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì (p + 1)(p − 1) chia hết cho 24. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), đường thẳng vuông góc với MD tại M cắt AC tại E. a) Chứng minh: MD = ME. b) Trên tia đối của tia CA lấy điểm K sao cho CK = BD, DK cắt BC tại I. Chứng minh I là trung điểm của DK. c) Đường vuông góc với DK tại I cắt AM tại S. Chứng minh SC ⊥ AK.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Ba thửa ruộng hình chữ nhật A, B, C có cùng diện tích. Chiều rộng các thửa ruộng A; B; C lần lượt tỉ lệ thuận với 4; 5; 6. Chiều dài của thửa ruộng A nhỏ hơn tổng chiều dài của thửa ruộng B và C là 42 m. Tính chiều dài mỗi thửa ruộng? + Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC tại điểm M. Lấy điểm D trên cạnh BC sao cho BD = BA. Gọi E là giao điểm của hai đường thẳng DM và BA. 1) Chứng minh: MA = MD 2) Kẻ DH ⊥ MC; AK ⊥ ME (H thuộc MC; K thuộc ME), gọi N là giao điểm của hai tia DH và AK. Chứng minh MHN = MKN và ba điểm B, M, N thẳng hàng 3) Từ C kẻ đường thẳng vuông góc với AC cắt tia BM tại F. Chứng minh: AB AM CF CM. + Cho tích A = 1.2.3.4.5…398.399.400. Hỏi tích A có tận cùng bao nhiêu chữ số 0?
Đề Olympic Toán 7 năm 2022 - 2023 phòng GDĐT Quốc Oai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi Olympic môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quốc Oai, thành phố Hà Nội. Trích dẫn Đề Olympic Toán 7 năm 2022 – 2023 phòng GD&ĐT Quốc Oai – Hà Nội : + Cho p là số nguyên tố lớn hơn 3 thỏa mãn 10p + 1 cũng là số nguyên tố. Chứng minh rằng 5p + 1 chia hết cho 6. Tìm số abcde sao cho abcde = 2.ab.cde. + Cho tam giác ABC vuông tại A, đường cao AH. Tia phân giác của HAB cắt BC tại D. Kẻ DK vuông góc AB (K thuộc AB). Chứng minh: a/ AH = AK b/ Tam giác ACD cân c/ AB + AC < BC + AH. + Cho tam giác ABC có A = 75°. Điểm D trên cạnh BC sao cho các tam giác ABD và ACD là các tam giác cân. Tính số đo của B, C.