Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên

Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, phân dạng và hướng dẫn giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên trong chương trình Số học 6. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề ôn tập và bổ túc về số tự nhiên: BÀI 1 . TẬP HỢP. PHẦN TỬ CỦA TẬP HỢP. + Dạng 1. Viết một tập hợp cho trước. + Dạng 2. Sử dụng các kí hiệu. + Dạng 3. Minh họa một tập hợp cho trước bằng hình vẽ. BÀI 2 . TẬP HỢP CÁC SỐ TỰ NHIÊN. + Dạng 1. Tìm số liền sau, số liền trước của một số tự nhiên cho trước. + Dạng 2. Tìm các số tự nhiên thỏa mãn điều kiện cho trước. + Dạng 3. Biểu diễn trên tia số các số tự nhiên thỏa mãn điều kiện cho trước. BÀI 3 . GHI SỐ TỰ NHIÊN. + Dạng 1. Ghi các số tự nhiên. + Dạng 2. Viết tất cả các số có n chữ số từ n chữ số cho trước. + Dạng 3. Tính số các số có n chữ số cho trước. + Dạng 4. Sử dụng công thức đếm số các số tự nhiên. + Dạng 5. Đọc và viết các số bằng chữ số la mã. BÀI 4 . SỐ PHẦN TỬ CỦA MỘT TẬP HỢP. TẬP HỢP CON. + Dạng 1. Viết một tập hợp bằng cách liệt kê các phần tử theo tính chất đặc trưng cho các phần tử của tập hợp ấy. + Dạng 2. Sử dụng các kí hiệu. + Dạng 3. Tìm số phần tử của một tập hợp cho trước. + Dạng 4. Bài tập về tập rỗng. + Dạng 5. Viết tất cả các tập hợp con của tập cho trước. BÀI 5 . PHÉP CỘNG VÀ PHÉP NHÂN. + Dạng 1. Thực hành phép cộng, phép nhân. + Dạng 2. Áp dụng các tính chất của phép cộng và phép nhân để tính nhanh. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Viết một số dưới dạng một tổng hoặc một tích. + Dạng 5. Tìm chữ số chưa biết trong phép cộng, phép nhân. + Dạng 6. So sánh hai tổng hoặc hai tích mà không tính cụ thể giá trị của chúng. + Dạng 7. Tìm số tự nhiên có nhiều chữ số khi biết điều kiện xác định các chữ số trong số đó. BÀI 6 . PHÉP TRỪ VÀ PHÉP CHIA. + Dạng 1. Thực hành phép trừ và phép chia. + Dạng 2. Áp dụng tính chất các phép tính để tính nhanh. + Dạng 3. Tìm số chưa biết trong một đẳng thức. + Dạng 4. Bài tập về phép chia có dư. + Dạng 5. Tìm những chữ số chưa biết trong phép trừ và phép chia. BÀI 7 . LŨY THỪA VỚI SỐ MŨ TỰ NHIÊN. NHÂN HAI LŨY THỪA CÙNG CƠ SỐ. + Dạng 1. Viết gọn một tích bằng cách dùng lũy thừa. + Dạng 2. Viết một số dưới dạng một lũy thừa với số mũ lớn hơn 1. + Dạng 3. Nhân hai lũy thừa cùng cơ số. BÀI 8 . CHIA HAI LŨY THỪA CÙNG CƠ SỐ. + Dạng 1. Viết kết quả phép tính dưới dạng một lũy thừa. + Dạng 2. Tính kết quả phép chia hai lũy thừa bằng hai cách. + Dạng 3. Tìm số mũ của một lũy thừa trong một đẳng thức. + Dạng 4. Viết một số tự nhiên dưới dạng tổng các lũy thừa của 10. + Dạng 5. Tìm cơ số của lũy thừa. + Dạng 6. So sánh các số viết dưới dạng lũy thừa. BÀI 9 . THỨ TỰ THỰC HIỆN CÁC PHÉP TÍNH. + Dạng 1. Thực hiện các phép tính theo thứ tự đã quy định. + Dạng 2. Tìm số chưa biết trong đẳng thức hoặc trong một sơ đồ. + Dạng 3. So sánh giá trị hai biểu thức đại số. [ads] BÀI 10 . TÍNH CHẤT CHIA HẾT CỦA MỘT TỔNG. + Dạng 1. Xét tính chia hết của một tổng hoặc một hiệu. + Dạng 2. Tìm điều kiện của một số hạng để tổng hoặc hiệu chia hết cho một số nào đó. + Dạng 3. Xét tính chia hết của một tích. BÀI 11 . DẤU HIỆU CHIA HẾT CHO 2 VÀ CHO 5. + Dạng 1. Nhận biết các số chia hết cho 2 và cho 5. + Dạng 2. Viết các số chia hết cho 2, cho 5 từ các số hoặc các chữ số cho trước. + Dạng 3. Toán có liên quan đến số dư trong phép chia một số tự nhiên cho 2, cho 5. + Dạng 4. Tìm tập hợp các số tự nhiên chia hết cho 2, cho 5 trong một khoảng cho trước. + Dạng 5. Vận dụng tính chất chia hết và chia còn dư để giải toán có lời văn. BÀI 12 . DẤU HIỆU CHIA HẾT CHO 3, CHO 9. + Dạng 1. Nhận biết các số chia hết cho 3, cho 9. + Dạng 2. Viết các số chia hết cho 3, cho 9 từ các số hoặc các chữ số cho trước. + Dạng 3. Toán có liên quan đến số dư trong phép chia một số tự nhiên cho 3, cho 9. + Dạng 4. Tìm tập hợp các số tự nhiên chia hết cho 3, cho 9 trong một khoảng cho trước. BÀI 13 . ƯỚC VÀ BỘI. + Dạng 1. Tìm và viết tập hợp các ước, tập hợp các bội của một số cho trước. + Dạng 2. Viết tất cả các số là bội hoặc ước của một số cho trước và thỏa mãn điều kiện cho trước. + Dạng 3. Bài toán đưa về việc tìm ước hoặc bội của một số cho trước. BÀI 14 . SỐ NGUYÊN TỐ. HỢP SỐ. BẢNG SỐ NGUYÊN TỐ. + Dạng 1. Nhận biết số nguyên tố, hợp số. + Dạng 2. Viết số nguyên tố hoặc hợp số từ những số cho trước. + Dạng 3. Chứng minh một số là số nguyên tố hay hợp số. BÀI 15 . PHÂN TÍCH MỘT SỐ RA THỪA SỐ NGUYÊN TỐ. + Dạng 1. Phân tích các số cho trước ra thừa số nguyên tố. + Dạng 2. Ứng dụng phân tích một số ra thừa số nguyên tố để tìm các ước của số đó. + Dạng 3. Bài toán đưa về việc phân tích một số ra thừa số nguyên tố. BÀI 16 . ƯỚC CHUNG VÀ BỘI CHUNG. + Dạng 1. Nhận biết và viết tập hợp các ước chung của hai hay nhiều số. + Dạng 2. Bài toán đưa về việc tìm ước chung của hai hay nhiều số. + Dạng 3. Nhận biết và viết tập hợp các bội chung của hai hay nhiều số. + Dạng 4. Tìm giao của hai tập hợp cho trước. BÀI 17 . ƯỚC CHUNG LỚN NHẤT. + Dạng 1. Tìm ước chung lớn nhất của các số cho trước. + Dạng 2. Bài toán đưa về việc tìm ưcln của hai hay nhiều số. + Dạng 3. Tìm các ước chung của hai hay nhiều số thỏa mãn điều kiện cho trước. BÀI 18 . BỘI CHUNG NHỎ NHẤT. + Dạng 1. Tìm bội chung nhỏ nhất của các số cho trước. + Dạng 2. Bài toán đưa về việc tìm bcnn của hai hay nhiều số. + Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình có trục đối xứng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Khái niệm hình có trục đối xứng. – Cho hình (H). Nếu có một đường thẳng d chia hình (H) thành hai phần bằng nhau mà khi “gấp” hình theo đường thẳng d thấy hai phần đó “chồng khít” lên nhau thì hình (H) được gọi là hình có trục đối xứng. – Đường thẳng d nói trên được gọi là trục đối xứng của hình (H). 2. Chú ý. – Hình có trục đối xứng còn được gọi là hình đối xứng trục. – Không phải hình nào cũng đều có trục đối xứng. – Một hình có thể có một, hai, ba, … trục đối xứng, có thể có vô số trục đối xứng. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề chu vi và diện tích của một số tứ giác đã học, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Chu vi và diện tích các hình. a) Hình vuông: Hình vuông ABCD có cạnh bằng a thì: + Chu vi của hình vuông là C a 4. + Diện tích của hình vuông là 2 S a a a. b) Hình chữ nhật: Hình chữ nhật ABCD có chiều dài là a, chiều rộng bằng b thì: + Chu vi của hình chữ nhật là C 2 a b. + Diện tích của hình chữ nhật là S a b. c) Hình thoi: Hình thoi ABCD có độ dài cạnh là a và độ dài hai đường chéo là m và n thì: + Chu vi của hình thoi là C a 4. + Diện tích của hình thoi là 2 1 S m n. d) Hình bình hành: Hình bình hành ABCD có độ dài hai cạnh là a, b và độ dài đường cao ứng với cạnh a là h thì: + Chu vi của hình bình hành là C 2 a b. + Diện tích của hình bình hành là S a h. e) Hình thang cân: Hình thang cân ABCD có độ dài hai cạnh đáy là a, b; độ dài cạnh bên là c và độ dài đường cao ứng với cạnh đáy là h thì: + Chu vi của hình thang cân là C a b 2c. + Diện tích của hình bình thang cân là 2 S a b h. 2. Các dạng toán thường gặp. Dạng 1: Tính diện tích các hình đã học. Áp dụng công thức tính diện tích của các hình. Dạng 2: Tính một yếu tố của hình khi biết chu vi, diện tích của hình đó. Từ công thức tính chu vi, diện tích các hình, thay các đại lượng đã biết vào công thức rồi rút ra đại lượng cần tính. Dạng 3: Bài toán thực tế. Sắp xếp được mối liên hệ giữa các kiến thức đã học để giải bài toán. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình chữ nhật, hình thoi, hình bình hành, hình thang cân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình chữ nhật, hình thoi, hình bình hành, hình thang cân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình chữ nhật. Hình chữ nhật ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Bốn góc đỉnh A, B, C, D bằng nhau và bằng góc vuông. + Hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 2. Hình thoi. Hình thoi ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Bốn cạnh bằng nhau: AD = BC = AB = DC. + Hai đường chéo vuông góc với nhau: AC, BD vuông góc với nhau. 3. Hình bình hành. Hình bình hành ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đối diện song song: AB song song với CD, BC song song với AD. + Hai cạnh đối diện bằng nhau: AD = BC; AB = DC. + Hai cặp góc đối diện bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo cắt nhau tại trung điểm mỗi đường: OA = OC = OB = OD. 4. Hình thang cân. Hình thang cân ABCD có: + Bốn đỉnh: A, B, C, D. + Hai cạnh đáy song song: AB song song với CD. + Hai cạnh bên bằng nhau: AD = BC. + Hai góc kề 1 đáy bằng nhau: góc đỉnh A bằng góc đỉnh C, góc đỉnh B bằng góc đỉnh D. + Hai đường chéo bằng nhau: AC = BD. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm hình tam giác đều, hình vuông, hình lục giác đều
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình tam giác đều, hình vuông, hình lục giác đều, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình vuông. Hình vuông ABCD có: + Bốn đỉnh A B C D. + Bốn cạnh bằng nhau AB BC CD DA. + Bốn góc bằng nhau và bằng góc vuông. + Hai đường chéo là AC và BD. 2. Tam giác đều. Tam giác đều ABC có: + Ba đỉnh A B C. + Ba cạnh bằng nhau AB BC CA. + Ba góc đỉnh A B C bằng nhau. 3. Lục giác đều. Hình ABCDEF gọi là hình lục giác đều có: + Sáu đỉnh A, B, C, D, E, F. + Sáu cạnh bằng nhau AB BC CD DE EF FA. + Sáu góc đỉnh A, B, C, D, E, F bằng nhau. Ba đường chéo chính là AD, BE, CF. B. BÀI TẬP TRẮC NGHIỆM