Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 lần 1 sở GDĐT Ninh Bình

Ngày … tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 lần 1 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 lần 1 sở GD&ĐT Ninh Bình : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Có 2 loại dung dịch muối ăn, một loại chứa 1% muối ăn và loại còn lại chứa 3,5% muối ăn. Hỏi cần lấy bao nhiêu cân dung dịch mỗi loại trên để hoà lẫn với nhau tạo thành 140 cân dung dịch chứa 3% muối ăn? [ads] + Cho đoạn thẳng HK = 5cm. Vẽ đường tròn tâm H, bán kính 2cm và đường tròn tâm K, bán kính 3cm. a) Xác định vị trí tương đối của hai đường tròn trên. b) Trên đoạn thẳng HK lấy điểm I sao cho IK = 1cm. Vẽ đường thẳng đi qua I và vuông góc với HK, đường thẳng này cắt đường tròn (K) tại hai điểm P, Q. Tính diện tích tứ giác HPKQ. + Một bể cá làm bằng kính dạng hình hộp chữ nhật có thể tích là 500dm3 và chiều cao là 5dm (bỏ qua chiều dày của kính làm bể cá). a) Tính diện tích đáy của bể cá trên. b) Đáy của bể cá trên có thể có chu vi nhỏ nhất bằng bao nhiêu? Tại sao?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát Toán vào 10 lần 2 năm 2023 - 2024 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hoằng Hóa, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán vào 10 lần 2 năm 2023 – 2024 phòng GD&ĐT Hoằng Hóa – Thanh Hóa : + Trong hệ trục toạ độ Oxy, cho hai đường thẳng 2 1 (d) y (m 1) x 2m (m là tham số) và 2 (d) y 3x 4. Tìm các giá trị của tham số m để các đường thẳng 1 (d) và 2 (d) song song với nhau. + Cho phương trình: 2 2 x 2 m 2 x m 4m 0 1 (với x là ẩn số). 1) Giải phương trình (1) khi m 1. 2) Tìm các giá trị của m để phương trình (1) có hai nghiệm phân biệt 1 2 x x thỏa mãn điều kiện: 2 1 1 2 3 3 x x. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Ba đường cao AD, BE, CF cắt nhau tại H. 1) Chứng minh tứ giác AFHE nội tiếp. 2) Tia AD cắt đường tròn (O) ở K (K ≠ A). Tiếp tuyến tại C của đường tròn (O) cắt đường thẳng FD tại M. AM cắt đường tròn (O) tại I (I ≠ A). Chứng minh: MC2 = MI.MA và tam giác CMD cân. 3) MD cắt BI tại N. Chứng minh ba điểm C, N, K thẳng hàng.
Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào lớp 10 năm 2023 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng d có phương trình y mx m 1 (m là tham số). Tìm giá trị của m để đường thẳng d đi qua điểm M 1 3. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O AB AC các đường cao BE CF. Gọi K là giao điểm của đường thẳng EF và BC. Đường thẳng AK cắt đường tròn O tại M (M khác A). 1. Chứng minh BFEC là tứ giác nội tiếp. 2. Chứng minh MAF MEF. 3. Chứng minh BM AC AM BC CM AB. + Cho ba số thực dương abc thay đổi thỏa mãn điều kiện 3 a b c abc. Tìm giá trị nhỏ nhất của biểu thức 5 3 3 2 a b c S a b c a.
Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Toán) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (chuyên) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho 1003 số hữu tỷ khác 0, trong đó 4 số bất kỳ nào trong chúng cũng có thể lập thành một tỉ lệ thức. Chứng minh rằng trong các số đã cho có ít nhất 1000 số bằng nhau. + Cho hình thang ABCD nội tiếp đường tròn bán kính R = 3cm với BC = 2 cm và AD = 4cm. Lấy điểm M trên cạnh AB sao cho MB = 3MA. Gọi N là trung điểm của cạnh CD. Đường thẳng MN cắt AC tại P. a) Tính tỉ số CP/PA. b) Tính diện tích tứ giác APND. + Cho tứ giác ABCD nội tiếp đường tròn tâm O. Các đường phân giác của các góc BAD, BCD cắt nhau tại điểm K nằm trên đường chéo BD. Gọi M là trung điểm của BD, Q là giao điểm khác A của đường thẳng AM và đường tròn (O). Đường thẳng qua C song song với AD cắt tia AM tại P. N là trung điểm của CP. Chứng minh rằng: a) Hai tam giác ABQ và ADQ có diện tích bằng nhau. b) DN vuông góc với CP.
Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 - 2024 trường THPT chuyên Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát môn Toán (dành cho thí sinh thi vào chuyên Tin) tuyển sinh vào lớp 10 năm học 2023 – 2024 trường THPT chuyên Thái Nguyên, tỉnh Thái Nguyên. Trích dẫn Đề khảo sát Toán (Tin) vào lớp 10 năm 2023 – 2024 trường THPT chuyên Thái Nguyên : + Cho hai phương trình: x2 − bx + 4c = 0 (1); x2 – b2x – 4bc = 0 (2) (trong đó x là ẩn, b và c là các tham số). Biết phương trình (1) có hai nghiệm x1 và x2, phương trình (2) có hai nghiệm x3 và x4 thỏa mãn điều kiện x3 − x1 = x4 − x2 = 1. Xác định b và c. + Cho tập hợp X chứa đúng 501 số nguyên dương bất kỳ thỏa mãn mỗi số đó nhỏ hơn hoặc bằng 1000. Chứng minh rằng trong X có ít nhất một số chia hết cho một số khác. + Cho tam giác nhọn ABC có ba đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của đoạn AH. a. Chứng minh tứ giác BDHF nội tiếp đường tròn. b. Chứng minh AF.AB = AH.AD. c. Gọi O là trung điểm của cạnh BC, chứng minh ME vuông góc với EO. d. Gọi I và J tương ứng là tâm đường tròn nội tiếp hai tam giác BDF và EDC. Chứng minh DJI = DEB.