Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 lần 1 sở GDĐT Ninh Bình

Ngày … tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Ninh Bình tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 lần 1 sở GD&ĐT Ninh Bình gồm có 01 trang với 05 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 lần 1 sở GD&ĐT Ninh Bình : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Có 2 loại dung dịch muối ăn, một loại chứa 1% muối ăn và loại còn lại chứa 3,5% muối ăn. Hỏi cần lấy bao nhiêu cân dung dịch mỗi loại trên để hoà lẫn với nhau tạo thành 140 cân dung dịch chứa 3% muối ăn? [ads] + Cho đoạn thẳng HK = 5cm. Vẽ đường tròn tâm H, bán kính 2cm và đường tròn tâm K, bán kính 3cm. a) Xác định vị trí tương đối của hai đường tròn trên. b) Trên đoạn thẳng HK lấy điểm I sao cho IK = 1cm. Vẽ đường thẳng đi qua I và vuông góc với HK, đường thẳng này cắt đường tròn (K) tại hai điểm P, Q. Tính diện tích tứ giác HPKQ. + Một bể cá làm bằng kính dạng hình hộp chữ nhật có thể tích là 500dm3 và chiều cao là 5dm (bỏ qua chiều dày của kính làm bể cá). a) Tính diện tích đáy của bể cá trên. b) Đáy của bể cá trên có thể có chu vi nhỏ nhất bằng bao nhiêu? Tại sao?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán vào THPT lần 1 năm 2024 - 2025 phòng GDĐT Vụ Bản - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Vụ Bản, tỉnh Nam Định; đề thi gồm 02 trang, cấu trúc 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán vào THPT lần 1 năm 2024 – 2025 phòng GD&ĐT Vụ Bản – Nam Định : + Ngày 04 06 1783 anh em nhà Mông–gôn–fi-ê (Montgolfier) người Pháp phát minh ra khinh khí cầu dùng không khí nóng. Coi khinh khí cầu này là hình cầu đường kính 11 m. Diện tích mặt khinh khí cầu đó bằng? + Cho hình vuông ABCD có chu vi là 40 cm. Vẽ cung tròn (B BA) cắt đường chéo BD tại M cung tròn (D DM) cắt các cạnh DA DC lần lượt tại E F (hình vẽ bên). Tính diện tích phần hình vuông ABCD ở ngoài hai cung tròn (phần tô đậm trong hình, kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O có 2 đường cao BE, CF (E AC F AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N. a) Chứng minh tứ giác BF CE nội tiếp và A F ANC E b) Gọi P Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh HF NCB E và HE MQ HB HF MP NC.
Đề thi thử Toán tuyển sinh lớp 10 năm 2024 - 2025 phòng GDĐT TP Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 phòng Giáo dục và Đào tạo UBND thành phố Nam Định, tỉnh Nam Định; đề thi hình thức 20% trắc nghiệm khách quan + 80% tự luận, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử Toán tuyển sinh lớp 10 năm 2024 – 2025 phòng GD&ĐT TP Nam Định : + Cho tam giác ABC vuông tại A. Biết 0 AC cm ACB 3 30. Vẽ đường tròn tâm B bán kính BA cắt cạnh BC tại D. Tính diện tích phần mặt phẳng tô đậm ở hình vẽ bên. (Kết quả làm tròn đến chữ số thập phân thứ hai). + Cho tam giác ABC nhọn AB AC. Đường tròn O R đường kính BC cắt các cạnh AB AC; lần lượt tại E D. Các đường thẳng BD và CE cắt nhau tại I. Đường thẳng AI cắt BC tại H. a) Chứng minh tứ giác BHIE và CDIH là các tứ giác nội tiếp. b) Đường thẳng DH cắt đường thẳng CE tại M và cắt đường tròn O R tại điểm thứ hai là N (N khác D). Chứng minh NE AI và IE CM IM CE. + Một hình chữ nhật có chiều dài gấp đôi chiều rộng. Nếu giảm chiều dài 5m và tăng chiều rộng 5m thì được một hình vuông. Chu vi của hình chữ nhật ban đầu là?
Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử tuyển sinh vào lớp 10 THPT chuyên môn Toán (chung) năm 2024 lần 3 trường THPT chuyên ĐHSP Hà Nội, thành phố Hà Nội. Trích dẫn Đề thi thử vào 10 chuyên môn Toán (chung) năm 2024 lần 3 trường chuyên ĐHSP Hà Nội : + Một người gửi tiền vào ngân hàng với lãi suất 0,45%/tháng. Biết rằng, nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo. Người đó phải gửi số tiền ban đầu ít nhất bao nhiêu triệu đồng để số tiền lãi của tháng thứ hai không ít hơn 500 000 đồng? (làm tròn kết quả đến hàng đơn vị của triệu đồng). + Tìm tất cả các số thực m để hai đồ thị hàm số y = 2×2 và y = mx + 2 cắt nhau tại hai điểm phân biệt A(x1;y1) và B(x2;y2) thỏa mãn (y1 + 2)(y2 + 2) + 25x1x2 = 0. + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A chuyển động trên cung lớn BC sao cho AB < AC, tam giác ABC nhọn và không là tam giác cân. Các tiếp tuyến tại B và C của đường tròn (O;R) cắt nhau tại K. Đường thẳng qua điểm K song song với AB cắt cạnh AC tại I. Đoạn thẳng KI cắt đường tròn (O;R) tại D. Chứng minh rằng 4.1) Tứ giác KOIC nội tiếp một đường tròn. 4.2) ABC KOI. 4.3) Giá trị của biểu thức IA.IC + IO2 không phụ thuộc vào vị trí điểm A.