Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương - Hà Nội

Thứ Hai ngày 01 tháng 06 năm 2020, trường THCS Nguyễn Tri Phương, quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 lần thứ hai giai đoạn giữa học kỳ 2 năm học 2019 – 2020. Đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề có cấu trúc tương tự đề tuyển sinh vào lớp 10 môn Toán của sở Giáo dục và Đào tạo Hà Nội những năm gần đây. Trích dẫn đề khảo sát chất lượng Toán 9 lần 2 trường THCS Nguyễn Tri Phương – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một công nhân dự định làm 33 sản phẩm trong thời gian đã định. Trước khi làm việc xí nghiệp giao thêm cho 29 sản phẩm nữa. Do vậy mặc dù người đó đã làm tăng mỗi giờ 3 sản phẩm song vẫn hoàn thành chậm hơn dự kiến 1 giờ 30 phút. Tính số sản phẩm người công nhân dự định làm trong một giờ (biết rằng mỗi giờ người đó làm không dưới 8 sản phẩm). [ads] + Cho (O) và điểm M nằm ngoài (O). Qua M kẻ tiếp tuyến MA, MB với (O) tại tiếp điểm A, B. Một đường thẳng d đi qua M cắt (O) tại C, D (MC < MD và tia MC nằm giữa hai tia MB, MO). I là điểm chính giữa dây CD. a) Chứng minh: Tứ giác MAOI nội tiếp. b) Chứng minh: MA^2 = MC.MD. c) Cho BI cắt (O) tại điểm thứ hai là E. Chứng minh AE song song với CD và tam giác AED đồng dạng tam giác DAM. d) Qua I kẻ đường thẳng song song với BD cắt AB tại K. Chứng minh CK vuông góc BO. + Từ một miếng tôn hình chữ nhật có kích thước 22cm x 25cm, người ta muốn gò thành mặt xung quanh của cái bình hình trụ (đáy làm từ miếng tôn khác và coi như hao hụt đường nối tạo thành bình hình trụ không đáng kể). Hỏi người ta nên dùng miếng tốn như thế nào để bình có thể đựng được 1 lít nước? Tại sao?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 9 môn Toán năm 2021 2022 trường THCS Cầu Giấy Hà Nội
Nội dung Đề KSCL lớp 9 môn Toán năm 2021 2022 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Chào mừng đến với Đề KSCL môn Toán lớp 9 năm 2021-2022 trường THCS Cầu Giấy Hà Nội Chào mừng đến với Đề KSCL môn Toán lớp 9 năm 2021-2022 trường THCS Cầu Giấy Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán lớp 9 năm học 2021-2022 của trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 13 tháng 05 năm 2022 và rất mong nhận được sự chuẩn bị kỹ lưỡng và tự tin từ các em.
Đề KSCL vòng 5 lớp 9 môn Toán năm 2021 2022 trường THCS Cát Linh Hà Nội
Nội dung Đề KSCL vòng 5 lớp 9 môn Toán năm 2021 2022 trường THCS Cát Linh Hà Nội Bản PDF - Nội dung bài viết Đề KSCL vòng 5 lớp 9 môn Toán năm 2021-2022 trường THCS Cát Linh Hà Nội Đề KSCL vòng 5 lớp 9 môn Toán năm 2021-2022 trường THCS Cát Linh Hà Nội Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề khảo sát chất lượng vòng 5 môn Toán lớp 9 năm học 2021-2022 của trường THCS Cát Linh, thành phố Hà Nội. Kỳ thi sẽ được tổ chức vào ngày 21 tháng 05 năm 2022. Trích dẫn đề KSCL vòng 5 Toán lớp 9 năm 2021-2022 trường THCS Cát Linh - Hà Nội: 1. Cho parabol (P): y = x² và đường thẳng (d): y = (m + 1)x + 2 trong mặt phẳng tọa độ Oxy. a/ Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi giá trị của m. b/ Tìm m sao cho x₁² + x₁ + (m + 2)x₂ = 14, trong đó x₁ và x₂ là hoành độ giao điểm của đường thẳng (d) và parabol (P). 2. Cho đường tròn (O;R) đường kính AB và CD vuông góc với nhau, điểm E di chuyển trên cung nhỏ BC. Đoạn thẳng AE cắt CD và CB lần lượt tại M và N. Đoạn thẳng ED cắt AB tại H. 1/ Chứng minh tứ giác EBHN nội tiếp. 2/ Chứng minh BN·BC = BH·BA. 3/ Chứng minh diện tích tứ giác AMHD không đổi và xác định vị trí của điểm E để diện tích tam giác EMH đạt giá trị lớn nhất. 3. Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Chứng minh rằng... Hãy cùng nhau rèn luyện và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt kết quả cao trong kỳ thi. Cảm ơn mọi người đã lắng nghe!
Đề KSCL lần 2 lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An
Nội dung Đề KSCL lần 2 lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Quỳnh Lưu Nghệ An Bản PDF - Nội dung bài viết Đề KSCL lần 2 Toán lớp 9 năm 2022 – 2023 Đề KSCL lần 2 Toán lớp 9 năm 2022 – 2023 Chào quý thầy, cô và các em học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi thử và khảo sát chất lượng lần 2 môn Toán lớp 9 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo huyện Quỳnh Lưu, tỉnh Nghệ An. Đề thi bao gồm đáp án và hướng dẫn chấm điểm nếu cần. Trích dẫn một số câu hỏi thú vị từ đề thi: 1. Nhân dịp nghỉ lễ 30/4 và 1/5, một nhóm thanh niên đi du lịch từ Thành Phố Vinh về bãi biển Quỳnh Nghĩa – Quỳnh Lưu. Họ di chuyển bằng xe khách từ Vinh đến Cầu Giát và sau đó bằng taxi từ Cầu Giát đến bãi biển Quỳnh Nghĩa. Nếu tổng thời gian di chuyển là 2 giờ và vận tốc của xe khách nhanh hơn xe taxi 10 km/h, hãy tính vận tốc của mỗi loại xe. 2. Cho tam giác ABC vuông tại A. Đường tròn tâm O, đường kính AB cắt BC tại D. Gọi H là hình chiếu của A lên OC, tia AH cắt BC tại M. Hãy chứng minh: a) Tứ giác AHDC nội tiếp b) CD || OB || CO || DH c) DM = HB = DH = MB 3. Xác định hệ số a, b của hàm số y = ax + b biết đồ thị hàm số song song với đường thẳng y = x - 2 và cắt trục hoành tại điểm có hoành độ bằng -1. Các bạn hãy tham gia vào bài thi và thử sức với những bài toán thú vị này! Chúc các em thành công!
Đề KSCL lớp 9 môn Toán cuối năm 2022 2023 phòng GD ĐT thành phố Vinh Nghệ An
Nội dung Đề KSCL lớp 9 môn Toán cuối năm 2022 2023 phòng GD ĐT thành phố Vinh Nghệ An Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 cuối năm 2022 - 2023 phòng GD&ĐT thành phố Vinh - Nghệ An Đề KSCL Toán lớp 9 cuối năm 2022 - 2023 phòng GD&ĐT thành phố Vinh - Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến các bạn đề khảo sát chất lượng môn Toán lớp 9 cuối năm học 2022 - 2023 do phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An công bố. Đề thi bao gồm các câu hỏi thú vị và đa dạng, nhằm kiểm tra kiến thức và kỹ năng của các em trong môn Toán. Ví dụ như câu hỏi sau: 1. Trong một cuộc họp, ban đầu người ta bố trí 360 ghế theo các dãy và số ghế trong mỗi dãy bằng nhau. Tuy nhiên sau đó để khu vực sân khấu rộng hơn người ta thêm 4 ghế vào mỗi dãy thì bớt được 3 dãy và số ghế trong phòng không thay đổi. Hỏi theo sự sắp xếp ban đầu thì trong phòng họp bố trí bao nhiêu dãy ghế? 2. Cho tam giác ABC cân tại A (BC < BA), nội tiếp đường tròn (O). Tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại điểm K. Câu hỏi đưa ra các yêu cầu về chứng minh và tính toán độ dài cung nhỏ BC của đường tròn (O). 3. Chứng minh rằng ít nhất một trong hai phương trình x2 + ax + b = 0 và x2 + bx + a = 0 có nghiệm, khi biết 1/a + 1/b = 1/2. Hy vọng đề thi sẽ giúp các em rèn luyện và nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao!