Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Toán 11 lần 3 năm 2018 - 2019 trường Thạch Thành 1 - Thanh Hóa

Đề thi Toán 11 lần 3 năm 2018 – 2019 trường Thạch Thành 1 – Thanh Hóa có mã đề 132 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài là 90 phút, kỳ thi nhằm đánh giá chất lượng môn Toán đối với học sinh khối 11 trong giai đoạn giữa học kỳ 2 năm học 2018 – 2019, đề thi có đáp án mã đề 132, 209. Trích dẫn đề thi Toán 11 lần 3 năm 2018 – 2019 trường Thạch Thành 1 – Thanh Hóa : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. Giao tuyến của (MNK) với (SAB) là đường thẳng KT, với T được xác định theo một trong bốn phương án được liệt kê dưới đây. Hãy chọn khẳng định đúng: A. T là giao điểm của KN và SB. B. T là giao điểm của MN với SB. C. T là giao điểm của MN và AB. D. T là giao điểm của KN và AB. [ads] + Cho hàm số f(x) xác định trên đoạn [a;b]. Trong các mệnh đề sau, mệnh đề nào đúng? A. Nếu hàm số f(x) liên tục trên đoạn [a;b] và f(a)f(b) > 0 thì phương trình f(x) = 0 không có nghiệm trên khoảng (a;b). B. Nếu f(a)f(b) < 0 thì phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (a;b). C. Nếu hàm số f(x) liên tục, tăng trên đoạn [a;b] và f(a)f(b) > 0 thì phương trình f(x) = 0 không thể có nghiệm trên khoảng (a;b). D. Nếu phương trình f(x) = 0 có nghiệm trong khoảng (a;b) thì hàm số f(x) phải liên tục trên khoảng (a;b). + Trên giá sách có 20 cuốn sách; trong đó 2 cuốn sách cùng thể loại, 18 cuốn sách khác thể loại. Hỏi có bao nhiêu cách sắp xếp sao cho các cuốn sách cùng thể loại xếp kề nhau?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng lần 1 lớp 11 môn Toán năm 2020 2021 trường Quế Võ 1 Bắc Ninh
Nội dung Đề khảo sát chất lượng lần 1 lớp 11 môn Toán năm 2020 2021 trường Quế Võ 1 Bắc Ninh Bản PDF Đề khảo sát chất lượng lần 1 Toán lớp 11 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 110 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 110, 232, 354, 476, 598, 610, 792, 874, 956, 138, 210, 392. Trích dẫn đề khảo sát chất lượng lần 1 Toán lớp 11 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây đúng? A. d qua S và song song với BC. B. d qua S và song song với DC. C. d qua S và song song với AB. D. d qua S và song song với BD. + Cho một bảng ô vuông 3 x 3. Điền ngẫu nhiên các số 1, 2, 3, 4, 5, 6, 7, 8, 9 vào bảng trên (mỗi ô chỉ điền một số). Gọi A là biến cố “mỗi hàng, mỗi cột bất kì đều có ít nhất một số lẻ”. Xác suất của biến cố A bằng? + Cho khai triển nhị thức P(x) = (1 + x)^6. Xét các khẳng định sau: (I) Khai triển P(x) gồm có 7 số hạng. (II) Số hạng thứ 2 của khai triển P(x) là 6x. (III) Hệ số của x^5 trong khai triển P(x) là 5. (IV) Số hạng chính giữa của khai triển P(x) là số hạng thứ 3. Số khẳng định đúng? File WORD (dành cho quý thầy, cô):
Đề khảo sát chất lượng lớp 11 môn Toán năm 2020 2021 trường THPT Yên Mỹ Hưng Yên
Nội dung Đề khảo sát chất lượng lớp 11 môn Toán năm 2020 2021 trường THPT Yên Mỹ Hưng Yên Bản PDF Đề khảo sát chất lượng Toán lớp 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên mã đề 291 gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát chất lượng Toán lớp 11 năm 2020 – 2021 trường THPT Yên Mỹ – Hưng Yên : + Khẳng định nào sai: A. Phép quay biến đường thẳng thành đường thẳng song song với nó. B. Phép tịnh tiến biến tam giác thành tam giác bằng nó. C. Phép tịnh tiến biến đoạn thẳng thành đoạn thẳng bằng nó. D. Phép quay biến đường tròn thành đường tròn có cùng bán kính. + Cho hình chóp S.ABCD có đáy ABCD không là hình thang. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là: A. Đường thẳng SE với E là giao điểm của AD và BC. B. Đường thẳng đi qua S và song song BC. C. Đường thẳng SI với I là giao điểm của AB và CD. D. Đường thẳng SO với O là giao điểm của AC và BD. + Để lắp đường dây cao thế từ vị trí A đến vị trí B phải tránh một ngọn núi, do đó người ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10km, rồi nối từ vị trí C đến vị trí B dài 8km. Biết góc tạo bởi 2 đoạn dây AC và CB là 85 độ. Hỏi so với việc nối thẳng từ A đến B phải tốn thêm khoảng bao nhiêu mét dây? File WORD (dành cho quý thầy, cô):
Đề ĐGCB học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên KHTN Hà Nội
Nội dung Đề ĐGCB học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên KHTN Hà Nội Bản PDF Thứ Hai ngày 19 tháng 10 năm 2020, trường THPT chuyên Khoa học Tự nhiên, Đại học Khoa học Tự nhiên, Đại học Quốc gia Hà Nội tổ chức kỳ thi đánh giá công bằng học kỳ 1 môn Toán lớp 11 năm học 2020 – 2021. Đề ĐGCB học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề ĐGCB học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên KHTN – Hà Nội : + Một nhóm 10 học sinh gồm 4 học sinh lớp A, 3 học sinh lớp B và 3 học sinh lớp C. Chọn ngẫu nhiên 5 học sinh từ nhóm này. Tính xác suất xảy ra tình huống lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp A. + Cho cấp số cộng (un) với công sai là số dương. Biết rằng u1, u2, u6 lập thành một cấp số nhân và tổng của chúng là 21. Hãy tính tổng 20 số hạng đầu tiên của cấp số cộng (un). + Cho một bảng ô vuông kích thước 4 x 4, gồm 16 ô vuông con. Ta điền ngẫu nhiên vào mỗi ô vuông con một trong hai số 1 hoặc -1. Tính xác suất xảy ra tình huống tổng các số trong mỗi hàng và tổng các số trong mỗi cột đều bằng 0.
Đề sát hạch lớp 11 môn Toán lần 3 năm 2019 2020 trường THPT Đoàn Thượng Hải Dương
Nội dung Đề sát hạch lớp 11 môn Toán lần 3 năm 2019 2020 trường THPT Đoàn Thượng Hải Dương Bản PDF Đề sát hạch Toán lớp 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương mã đề 132, đề được biên soạn theo dạng đề thi trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề sát hạch Toán lớp 11 lần 3 năm 2019 – 2020 trường THPT Đoàn Thượng – Hải Dương : + Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác suất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho. [ads] + Cho hàm số y = (x + 2)/(2x + 3) có đồ thị là đường cong (C). Đường thẳng có phương trình y = ax + b là tiếp tuyến của (C) cắt trục hoành tại A, cắt trục tung tại B sao cho tam giác OAB là tam giác vuông cân tại O, với O là gốc tọa độ. Khi đó tổng S = a + b bằng bao nhiêu? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng? File WORD (dành cho quý thầy, cô):