Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2017 2018 trường THCS Vũ Phạm Khải Ninh Bình

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2017 2018 trường THCS Vũ Phạm Khải Ninh Bình Bản PDF - Nội dung bài viết Đề khảo sát HSG lớp 7 môn Toán năm 2017-2018 Trường THCS Vũ Phạm Khải Ninh Bình Đề khảo sát HSG lớp 7 môn Toán năm 2017-2018 Trường THCS Vũ Phạm Khải Ninh Bình Đề khảo sát HSG Toán lớp 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình là một bài thi có đáp án và lời giải chi tiết. Kỳ thi đã diễn ra vào ngày 12 tháng 03 năm 2018. Trong bài thi này, học sinh được đặt ra các bài toán thú vị và bài tập sâu về các kiến thức cơ bản về Toán của lớp 7. Một số câu hỏi mà học sinh gặp phải bao gồm: Phân chia số lượng vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ và tính toán số vở mỗi lớp nhận được. Giải hàm số f(x) thỏa mãn các điều kiện f(0) ≠0, f(1) = 3, f(x)f(y) = f(x+y) + f(x-y) với mọi x, y. Tìm ba phân số có tổng bằng 213/70, tỉ lệ giữa tử số và mẫu số của các phân số đã biết. Bài thi này không chỉ đánh giá kiến thức của học sinh mà còn khuyến khích họ suy nghĩ logic, phân tích và giải quyết vấn đề. Đây là một cơ hội tuyệt vời để học sinh thể hiện khả năng và trình độ của mình trong môn Toán.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiền Hải – Thái Bình : + Cho đa thức f(x) = ax2 + bx + c với a, b, c là các số nguyên. Biết rằng f(2), f(0), f(-2) đồng thời chia hết cho 3. Chứng minh a, b, c đều chia hết cho 3. + Tổng số học sinh ba lớp 7A, 7B, 7C của một trường THCS là 94 học sinh. Nếu chuyển 1 học sinh từ lớp 7A và 3 học sinh từ lớp 7B sang lớp 7C thì số học sinh của ba lớp 7A, 7B, 7C lần lượt tỉ lệ nghịch với 4; 5; 3. Tính số học sinh lúc đầu của mỗi lớp. + Cho tam giác ABC nhọn (AB < AC), kẻ tia phân giác AI (I thuộc BC) của góc BAC. Trên cạnh AC lấy điểm D sao cho AD = AB. a) Chứng minh IB = ID. b) Tia DI cắt tia AB tại E, tia AI cắt tia EC tại H. Chứng minh H là trung điểm của EC. 2) Cho tam giác ABC vuông tại C, kẻ CH vuông góc với AB (H thuộc AB). Chứng minh AC + BC < AB + CH.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Yên Thế - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Thế, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 02 tháng 03 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Cho các số nguyên dương m, n và p là số nguyên tố thỏa mãn: p/(m – 1) = (m + n)/p. Chứng minh rằng: p2 = n + 2. + Biết f(x) chia cho x – 3 thì dư 7; chia cho x – 2 thì dư 5; chia cho (x – 3).(x – 2) được thương là 3x và còn dư. Tìm f(x). + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC. Lấy điểm D trên đoạn thẳng AB (D khác A và B), trên tia đối của tia CA lấy điểm K sao cho CK = BD; DK cắt BC tại I. Hạ DP, KQ vuông góc với BC lần lượt tại P và Q. 1. Chứng minh rằng: BDP = CKQ; I là trung điểm DK. 2. Đường vuông góc với DK tại I cắt AM tại S. Chứng minh: SC vuông góc với AK. 3. Đường thẳng vuông góc với MD tại M cắt AC tại E. Chứng minh rằng: MD + ME ≥ AD + AE.
Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Tiên Du - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tiên Du, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 28 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Tiên Du – Bắc Ninh : + Tìm số nguyên n để số hữu tỉ (27 – 5n)/(n + 3) có giá trị là số nguyên. + Cho tam giác ABC nhọn. Bên ngoài tam giác ABC vẽ tam giác ABD vuông cân tại A và tam giác ACE vuông cân tại A. Gọi K là giao điểm của BE và CD. Gọi M là trung điểm của BC. a) Chứng minh BE = CD và BE vuông góc CD. b) Giả sử BC = 6cm. Tính độ dài đoạn KM. c) Gọi N là trung điểm của DE. Chứng minh AN vuông góc BC. + Cho 5 số nguyên dương và mỗi số chỉ có ước nguyên tố là 2 và 3. Chứng minh rằng có 2 số mà tích là một số chính phương.