Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2019 lần 1 trường THPT chuyên Bến Tre

Nhằm hỗ trợ các em học sinh lớp 12 trong quá trình ôn tập chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức, giới thiệu đến các em đề thi thử Toán THPT Quốc gia 2019 lần 1 trường THPT chuyên Bến Tre. Đề thi có mã đề 132 gồm 7 trang, đề gồm 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử Toán THPT Quốc gia 2019 lần 1 trường THPT chuyên Bến Tre : + Trong kỳ thi chọn học sinh giỏi tỉnh có 105 em dự thi, có 10 em tham gia buổi gặp mặt trước kỳ thi. Biết các em đó có số thứ tự trong danh sách lập thành một cấp số cộng. Các em ngồi ngẫu nhiên vào hai dãy bàn đối diện nhau, mỗi dãy có năm ghế và mỗi ghế chỉ ngồi được một học sinh. Tính xác suất để tổng các số thứ tự của hai em ngồi đối diện nhau là bằng nhau. [ads] + Một cái ao hình ABCDE (như hình vẽ), ở giữa ao có một mảnh vườn hình tròn có bán kính 10m. Người ta muốn bắc một câu cầu từ bờ AB của ao đến vườn. Tính gần đúng độ dài tối thiếu l của cây cầu biết: Hai bờ AE và BC nằm trên hai đường thẳng vuông góc với nhau, hai đường thẳng này cắt nhau tại điểm O. Bờ AB là một phần của một parabol có đỉnh là điểm A và có trục đối xứng là đường thẳng OA. Độ dài đoạn OA và OB lần lượt là 40 m và 20 m. Tâm I của mảnh vườn lần lượt cách đường thẳng AE và BC lần lượt 40 m và 30m. + Sinh viên B được gia đình gửi tiết kiệm số tiền 300 triệu đồng vào ngân hàng theo mức kì hạn 1 tháng với lãi suất tiết kiệm là 0,4%/tháng. Mỗi tháng, vào ngày ngân hàng tính lãi, sinh viên B rút ra một số tiền như nhau để trang trải chi phí cho cuộc sống. Hỏi hàng tháng sinh viên này rút số tiền xấp sỉ bao nhiêu để sau 5 năm học đại học, số tiền tiết kiệm vừa hết?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Lê Khiết - Quảng Ngãi
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2022 lần 1 trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi; kỳ thi được diễn ra vào tháng 04 năm 2022. Trích dẫn đề thi thử Toán TN THPT 2022 lần 1 trường chuyên Lê Khiết – Quảng Ngãi : + Trong không gian Oxyz cho đường thẳng 1 2 1 1 1 1x y z d và mặt cầu 2 2 2 S x y z x y z 2 4 6 13 0. Lấy điểm M a b c với a 0 thuộc đường thẳng d sao cho từ M kẻ được ba tiếp tuyến MA MB MC đến mặt cầu S (A B C là tiếp điểm) thỏa mãn góc AMB 60 BMC 90 CMA 120. Tổng a b c bằng? + Cho hình chóp tứ giác đều có tất cả các cạnh đều bằng a. Một mặt phẳng thay đổi, vuông góc với cắt SO, SA, SB, SC, SD lần lượt tại I M N P Q. Một hình trụ có một đáy nội tiếp tứ giác MNPQ và một đáy nằm trên hình vuông ABCD. Khi thể tích khối trụ lớn nhất thì độ dài SI bằng? + Cho hình nón N1 đỉnh S đáy là đường tròn C O R đường cao SO 40cm. Người ta cắt hình nón bằng mặt phẳng vuông góc với trục để được hình nón nhỏ N2 có đỉnh S và đáy là đường tròn C O R. Biết rằng tỷ số thể tích 2 1 1 8 N N V V. Độ dài đường cao của hình nón N2 là?
Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Ngô Gia Tự - Đắk Lắk
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm 2022 lần 1 trường THPT Ngô Gia Tự, tỉnh Đắk Lắk; đề thi có đáp án mã đề 001 002 003 004 005. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường THPT Ngô Gia Tự – Đắk Lắk : + Trong không gian Oxyz, cho hai mặt phẳng Pxy z Q xyz 2 1 0 2 1 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu? + Tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và AB a AC 2a AD 3a. Gọi M là điểm bất kỳ thuộc miền trong tam giác BCD. Qua M, kẻ các đường thẳng 1 d song song với AB cắt mặt phẳng (ACD) tại B d 1 2 song song với AC cắt mặt phẳng (ABD) tại C d 1 3 song song với AD cắt mặt phẳng (ABC) tại D1. Thể tích khối tứ diện MB C D 11 1 lớn nhất bằng? + Cho hình trụ (T) có chiều cao bằng đường kính đáy, hai đáy là các hình tròn (O r) và (O r). Gọi A là điểm di động trên đường tròn (O r) và B là điểm di động trên đường tròn (O r) sao cho AB không là đường sinh của hình trụ (T). Khi thể tích khối tứ diện OO AB đạt giá trị lớn nhất thì đoạn thẳng AB có độ dài bằng?
Đề thi thử Toán THPTQG 2022 lần 1 trường chuyên Quang Trung - Bình Phước
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT Quốc gia năm học 2021 – 2022 lần 1 trường THPT chuyên Quang Trung, tỉnh Bình Phước. Trích dẫn đề thi thử Toán THPTQG 2022 lần 1 trường chuyên Quang Trung – Bình Phước : + Ba bạn Chuyên, Quang, Trung mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;17]. Xác suất để ba số được viết ra có tổng chia hết cho 3 bằng? + Cho hàm số y = f (x) có đạo hàm là hàm y = f'(x). Đồ thị hàm số y = f'(x) được cho như hình vẽ. Biết rằng f(0) + f(3) = f(2) + f(5). Giá trị nhỏ nhất và giá trị lón nhất của f (x) trên đoạn [0;5] lần lượt là? + Có một vật thể là hình tròn xoay có dạng giống như một cái ly như hình vẽ dưới đây. Người ta đo được đường kính của miệng ly là 4cm và chiều cao là 6cm. Biết rằng thiết diện của chiếc ly cắt bởi mặt phẳng đối xứng là một parabol. Tính thể tích V (cm) của vật thể đã cho.
Đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường chuyên Biên Hòa - Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2021 – 2022 lần 1 trường THPT chuyên Biên Hòa, tỉnh Hà Nam. Trích dẫn đề thi thử Toán tốt nghiệp THPT 2022 lần 1 trường chuyên Biên Hòa – Hà Nam : + Cho hàm số y = f(x) là hàm đa thức và có đồ thị f(x), f'(x) như hình vẽ bên dưới. Có bao nhiêu để giá giá trị nguyên của tham số trị lớn nhất của hàm số m 8(x) f(x) 2022 trên đoạn [-2;3] không vượt quá 4044. + Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) và đường thẳng (d). Điểm M(a;b;c) (a > 0) nằm trên đường thẳng (d) sao cho từ M kẻ được ba tiếp tuyến MA, MB, MC đến mặt cầu (S) thỏa mãn AMB = 60°; BMC = 90° và CMA = 120°. Tính Q = a + b – c. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 3a, góc SAB = SCB = 90° và khoảng cách từ A đến mặt phẳng (SBC) bằng a6. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABC theo a.