Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Hà Nội : + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Ba đường cao AD, BE và CF của tam giác ABC cùng đi qua điểm H. Đường thẳng EF cắt đường thẳng AD tại điểm Q. Gọi M và I lần lượt là trung điểm của các đoạn thẳng BC và AH. Đường thẳng IM cắt đường thẳng EF tại điểm K. 1) Chứng minh rằng tam giác AEK đồng dạng với tam giác ABM. 2) Đường thẳng EF cắt đường thẳng BC tại điểm S, đường thẳng SI cắt đường thẳng MQ tại điểm T. Chứng minh rằng bốn điểm A, T, H và M cùng thuộc một đường tròn. 3) Tia T H cắt đường tròn (O) tại điểm P. Chứng minh rằng ba điểm A, K và P thẳng hàng. + Cho 2023 điểm nằm trong một hình vuông cạnh 1. Một tam giác đều được gọi là phủ điểm M nếu điểm M nằm trong tam giác hoặc nằm trên cạnh của tam giác. 1) Chứng minh tồn tại tam giác đều cạnh 1/√2 phủ ít nhất 253 điểm trong 2023 điểm đã cho. 2) Chứng minh tồn tại tam giác đều cạnh 11 12 phủ ít nhất 506 điểm trong 2023 điểm đã cho. + Trên bàn có hai túi kẹo: túi thứ nhất có 18 viên kẹo, túi thứ hai có 21 viên kẹo. An và Bình cùng chơi một trò chơi như sau: mỗi lượt chơi, một bạn sẽ lấy đi 1 viên kẹo từ một túi bất kỳ hoặc là mỗi túi lấy đi 1 viên kẹo. Hai bạn luân phiên thực hiện lượt chơi của mình. Người đầu tiên không thể thực hiện được lượt chơi của mình là người thua cuộc, người còn lại là người thắng cuộc. Nếu An là người lấy kẹo trước, hãy chỉ ra chiến thuật chơi của An để An là người thắng cuộc.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo Đắk Nông; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Giải bài toán sau bằng cách lập phương trình: Thành phố Gia Nghĩa lên kế hoạch xét nghiệm Covid-19 cho 1000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 50 người. Vì thế, việc xét nghiệm hoàn thành sớm hơn kế hoạch 1 giờ. Hỏi theo kế hoạch, mỗi giờ thành phố Gia Nghĩa xét nghiệm được bao nhiêu người? + Cho nửa đường tròn đường kính AD. Lấy điểm B thuộc nửa đường tròn (B khác A và D), trên cung BD lấy điểm C (C khác B và D). Hai dây AC và BD cắt nhau tại điểm E. Kẻ đoạn thẳng EF vuông góc với AD (F thuộc AD). a) Chứng minh tứ giác ABEF nội tiếp. b) Chứng minh AE.AC AF.AD c) Chứng minh E là tâm đường tròn nội tiếp tam giác BFC. + Cho 4044 2022 2022 4x 9x 6 P x 2. Tìm giá trị của x để biểu thức P đạt giá trị nhỏ nhất.
Đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 - 2023 sở GDĐT Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo Điện Biên; kỳ thi được diễn ra vào ngày … tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Điện Biên : + Theo kế hoạch, một tổ công nhân dự định phải may 120 kiện khẩu trang để phục vụ công tác phòng chống dịch Covid – 19. Nhưng khi thực hiện nhờ cải tiễn kỹ thuật nên mỗi ngày tổ đã làm tăng thêm 5 kiện so với dự định. Do đó tổ đã hoàn thành công việc sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày tổ phải làm bao nhiêu kiện khẩu trang? + Cho đường tròn (O) và điểm P nằm ngoài (O). Kẻ hai tiếp tuyến PM PN với đường tròn (O) (M N là các tiếp điểm). Một đường thẳng d đi qua P cắt đường tròn (O) tại hai điểm BC (PB PC d không đi qua tâm O). 1. Chứng minh tứ giác PMON nội tiếp. 2. Chứng minh 2 PN PB PC. Tính độ dài đoạn BC khi PB cm PN cm 4 6. 3. Gọi I là trung điểm của BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai T. Chứng minh MT // BC. + Cho tam giác ABC vuông tại A với các đường phân giác trong BM và CN. Chứng minh bất đẳng thức 3 2 2 MC MA NB NA MA NA.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Ninh Thuận; kỳ thi được diễn ra vào ngày 01 tháng 07 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Một lâm trường có hai đội công nhân thực hiện trồng cây phủ xanh đồi trọc. Nếu mỗi công nhân của đội thứ nhất trồng được 30 cây và mỗi công nhân của đội thứ hai trồng được 40 cây thì tổng số cây của cả hai đội trồng là 2880. Tính số công nhân của mỗi đội biết tổng số công nhân của lâm trường là 82. + Cho ABC có ba góc nhọn nội tiếp đường tròn tâm O. Gọi D và E lần lượt là chân đường cao của tam giác ABC hạ từ B và C. 1) Chứng minh tứ giác BEDC là tứ giác nội tiếp. 2) Các đường cao BD và CE cắt đường tròn (O) tại điểm thứ hai lần lượt là I và J. Chứng minh rằng DE song song với IJ. 3) Chứng minh rằng OA vuông góc với DE. + Cho Parabol 2 P y x và đường thẳng d y x m 4. 1. Vẽ Parabol P. 2. Tìm tất cả các giá trị của tham số m để P và d có đúng một điểm chung.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo Phú Yên; kỳ thi được diễn ra vào ngày 14 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Phú Yên : + Đường tròn có bao nhiêu trục đối xứng? A. Có vô số trục đối xứng. B. Có duy nhất một trục đối xứng. C. Có hai trục đối xứng. D. Không có trục đối xứng nào. + Tính diện tích phần không tô màu, giới hạn bởi nửa đường tròn đường kính AC nửa đường tròn đường kính AB 8 cm và nửa đường tròn đường kính BC 4cm (hình 3). + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Phú và Yên cùng tham gia cuộc thi ma-ra-tông cự li 10 km. Trong 4 km đầu, cả hai chạy cùng vận tốc. Trong 6 km cuối, Phú tăng vận tốc thêm 2 km/h. Yên vẫn duy trì vận tốc của mình trong suốt quãng đường đua. Kết quả Phú về đích sớm hơn Yên 6 phút. Tính vận tốc chạy của Yên.