Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Đắk Nông

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán Trung học Cơ sở năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông; kỳ thi được diễn ra vào thứ Năm ngày 09 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Một xe tải có chiều rộng là 2,4 m chiều cao là 2,5 m muốn đi qua một cái cổng hình Parabol (Hình minh họa). Biết khoảng cách giữa hai chân cổng là 4m và khoảng cách từ đỉnh cổng tới mỗi chân cổng là 25 m (bỏ qua độ dày của cổng). a) Trong mặt phẳng tọa độ Oxy gọi Parabol (P): y = ax2 với a < 0 là hình biểu diễn cổng mà xe tải muốn đi qua. Chứng minh a = −1. b) Hỏi xe tải có đi qua cổng được không? Tại sao? + Một cái tháp được xây dựng bên bờ một con sông, từ một điểm đối diện với tháp ngay bờ bên kia người ta nhìn thấy đỉnh tháp với góc nâng 60°. Từ một điểm khác cách điểm ban đầu 20m người ta cũng nhìn thấy đỉnh tháp với góc nâng 30 (Hình minh họa). Tính chiều cao của tháp và bề rộng của con sông. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn tâm O bán kính R. Vẽ đường tròn tâm K đường kính BC, cắt cạnh AB và AC lần lượt tại điểm F và E. Gọi H là giao điểm của BE và CF. a) Chứng minh: AF.AB = AE.AC. b) Từ A vẽ các tiếp tuyến AM và AN với đường tròn (K) (với M, N là hai tiếp điểm; N thuộc cung EC). Chứng minh: ba điểm M, H, N thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán THCS năm 2023 - 2024 sở GDĐT Yên Bái
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán cấp THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 06 tháng 03 năm 2024. Trích dẫn Đề thi chọn học sinh giỏi Toán THCS năm 2023 – 2024 sở GD&ĐT Yên Bái : + Cho đường thẳng (d): y = (m2 – 5m + 8)x – m + 2 với m là tham số thực. Tìm tất cả các giá trị của m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A và B sao cho OB = 4OA. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao BE, CF cắt nhau tại H. Các đường thẳng BE, CF lần lượt cắt đường tròn (O) tại giao điểm thứ hai là P, Q (P khác B, Q khác C). Tiếp tuyến của đường tròn (O) tại B, C cắt đường thẳng EF lần lượt tại M, N. a) Chứng minh rằng AEHF là một tứ giác nội tiếp và AH = AP = AQ. b) Chứng minh rằng tam giác NEC cân tại N. c) Giả sử NP cắt đường tròn (O) tại K. Chứng minh rằng NE2 = NK.NP và ba điểm M, Q, K thẳng hàng. + Trên một khu rừng đủ rộng người ta trồng nhiều cây quế con, xem các gốc cây quế là các điểm (đường kính gốc cây không đáng kể). Người ta trồng cây sao cho các tam giác có đỉnh là các điểm tạo bởi gốc cây quế đều có diện tích không quá 500m2. Chứng minh rằng tồn tại một tam giác có diện tích không quá 2024m2 chứa tất cá các cây quế này.
Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Tân Uyên - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Tân Uyên, tỉnh Lai Châu; kỳ thi được diễn ra vào thứ Sáu ngày 26 tháng 01 năm 2024. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Tân Uyên – Lai Châu : + Tìm nghiệm nguyên x, y của phương trình (x − y)(2x + y + 1) + 9y = 22. + Cho góc xOy có số đo bằng 60°. Đường tròn có tâm K nằm trong góc xOy tiếp xúc với tia Ox tại M và tiếp xúc với tia Oy tại N. Trên tia Ox lấy điểm P sao cho OP = 3OM. Tiếp tuyến của đường tròn tâm K đi qua P và cắt tia Oy tại Q (Q khác O). Đường thẳng PK cắt đường thẳng MN ở E. Đường thẳng QK cắt đường thẳng MN ở F. a) Chứng minh OK vuông góc với MN. b) Chứng minh ME.PQ = KQ.PE. + Cho x, y, z là các số dương thỏa mãn x + y + z = 2024. Tìm giá trị lớn nhất của biểu thức A.
Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thành phố năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Nội : + Cho ba số nguyên a; b; c thỏa mãn a C b C c và ab C bc C ca đều chia hết cho 8. Chứng minh rằng abc chia hết cho 64. Chứng minh rằng không tồn tại các số nguyên x; y lớn hơn 1 sao cho x C y y C 1 1 chia hết cho x. + Cho tam giác ABC nội tiếp đường tròn O; có H là trực tâm. Gọi O0 là điểm đối xứng với điểm O qua đường thẳng BC. Đường thẳng đi qua điểm H vuông góc với đường thẳng HO0 cắt các đường thẳng AB và AC theo thứ tự tại M; N. Gọi I là tâm của đường tròn ngoại tiếp tam giác AMN. a) Chứng minh rằng O0 là tâm đường tròn ngoại tiếp tam giác BHC. b) Chứng minh rằng ba điểm A; H; I thẳng hàng. c) Gọi P là giao điểm thứ hai của đường thẳng AH và đường tròn OI Q là giao điểm của hai đường thẳng OP và BC. Đường tròn ngoại tiếp tam giác AMN cắt đường tròn O tại điểm thứ hai R. Chứng minh rằng đường thẳng QR song song với đường thẳng OI. + Xét số nguyên n > 100 thỏa mãn tồn tại tập hợp S gồm n số thực dương sao cho với mỗi phần tử x của tập S đều tồn tại 100 phần tử khác x của tập S có tích bằng x. Hỏi n nhỏ nhất bằng nhiêu?
Đề thi học sinh giỏi Toán 9 năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng tọa độ Oxy, các đường thẳng y = 2, y = 6, y = mx – 2 (m khác 0) và trục tung cắt nhau, phần chung giữa chúng tạo thành một hình thang. Tìm m để diện tích hình thang đó bằng 4 đơn vị diện tích. + Cho hình chữ nhật ABCD có AB = 3AD = 3a. Trên cạnh DC lần lượt lấy hai điểm P, Q sao cho DP = PQ = QC. Chứng minh hai tam giác PAQ và PCA đồng dạng. + Trên một mảnh đất hình chữ nhật ABCD có diện tích 200m2, người chủ lấy một phần đất để trồng hoa. Biết phần đất trồng hoa là hình chữ nhật với hai đỉnh đối diện là A và H, với H thuộc đường chéo BD. Hỏi số tiền lớn nhất mà người chủ cần dùng để trồng hoa là bao nhiêu? Biết rằng chi phí trồng hoa là 50000 đồng/m2.