Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 9 năm 2019 - 2020 phòng GDĐT Tân Bình - TP HCM

Ngày 13 tháng 12 năm 2019, phòng Giáo dục và Đào tạo quận Tân Bình, thành phố Hồ Chí Minh tổ chức kiểm tra chất lượng dạy và học môn Toán lớp 9 trong giai đoạn cuối học kỳ 1 năm học 2019 – 2020. Đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Bình – TP HCM gồm có 07 bài toán tự luận, đề thi gồm 01 trang, thời gian học sinh làm bài thi HK1 Toán 9 là 90 phút (không tính thời gian giám thị coi thi phát đề). Trích dẫn đề thi học kỳ 1 Toán 9 năm 2019 – 2020 phòng GD&ĐT Tân Bình – TP HCM : + Cho hai hàm số: y = 2x – 3 (D1) và y = -1/2x + 2 (D2). a) Vẽ (D1) và (D2) trên cùng một mặt phẳng tọa độ. b) Tìm tọa độ giao điểm A của (D1) và (D2) bằng phép toán. c) Tìm m để đường thẳng y = (m – 2)x + m + 8 có đồ thị (D3) đi qua điểm A. + Ở siêu thị có thang máy cuốn nhằm giúp khách hàng di chuyển từ tầng này của siêu thị lên tầng kế cận rất tiện lợi. Biết rằng thang cuốn này được thiết kế có độ nghiêng 36° so với phương ngang là góc BAH và tốc độ vận hành là 2m/s. Một khách hàng đã di chuyển bằng thang cuốn này từ tầng 1 lên tầng 2 của siêu thị theo hướng AB hết 8 giây. Hỏi khoảng cách giữa tầng 1 và tầng 2 của siêu thị (BH) cao bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ 2). [ads] + Tháng 11 vừa qua, có ngày Black Friday (thứ 6 đen – mua sắm siêu giảm giá). Phần lớn các trung tâm thương mại đều giảm giá rất nhiều mặt hàng. Mẹ bạn An có dẫn An đến một trung tâm thương mại để mua một bộ quần áo thể thao, Biết một bộ quần áo thể thao đang khuyến mãi giảm giá 40%, mẹ bạn An có thể khách hàng thân thiết của trung tâm thương mại nên được giảm thêm 5% trên giá đã giảm, mẹ bạn An chi phải trả 6480000 đồng cho một bộ quần áo thể thao. Hỏi giá ban đầu của một bộ quần áo thể thao nếu không khuyến mãi là bao nhiêu? + Sân trường THCS A là một hình vuông, còn sân trường THCS B là một hình chữ nhật có chiều rộng 4,5m và chiều dài 18m. Biết rằng diện tích của hai sân trường bằng nhau. Hãy tính chu vi sân trường THCS A. + Cho đường tròn (O) là đường tròn tâm O đường kính AB. Qua A vẽ tiếp tuyến Ax của (O), trên tia Ax lấy điểm M (M khác A), từ M vẽ tiếp tuyến MC của (O) (C là tiếp điểm). Gọi H là giao điểm của OM và AC. Đường thẳng MB cắt (O) tại D (D nằm giữa M và B). a) Chứng minh: OM vuông góc với AC tại H. b) Chứng minh: MD.MB = MH.MO và góc MHD = góc MBA. c) Gọi K là trung điểm đoạn thẳng BD. Tiếp tuyến tại B của (O) cắt tia OK tại E. Chứng minh: Ba điểm A, C, E thẳng hàng.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Đan Phượng Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Đan Phượng Hà Nội Bản PDF - Nội dung bài viết Đề thi học kỳ 1 Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng - Hà Nội Đề thi học kỳ 1 Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng - Hà Nội Các em học sinh thân mến, hôm nay Sytu xin giới thiệu đến các em đề thi học kỳ 1 môn Toán lớp 9 năm học 2020 – 2021 của phòng Giáo dục và Đào tạo Đan Phượng, thành phố Hà Nội. Bài thi bao gồm các câu hỏi thú vị và bám sát chương trình học, hãy cùng Sytu tìm hiểu chi tiết nhé! Đề thi bắt đầu với bài toán trong mặt phẳng Oxy, với đường thẳng (d): y = x + 3. Các câu hỏi được đưa ra như sau: a) Xác định tọa độ các giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Vẽ được đường thẳng (d) trong mặt phẳng tọa độ Oxy. b) Tính chu vi của tam giác OAB. c) Tìm m để đường thẳng (d’): 2y - 2 = mx - m^2 + 8m + 2 song song với đường thẳng (d). Tiếp theo là bài toán về tàu ngầm ở trên mặt biển đi xuống theo phương tạo với mặt nước biển một góc 20 độ. Nếu tàu chuyển động theo phương AC lặn xuống đến vị trí C được 300m, hỏi nó ở độ sâu theo phương thẳng đứng BC là bao nhiêu mét? Sau đó là bài toán về đường tròn O và các tiếp tuyến với đường tròn. Câu hỏi như sau: a) Chứng minh OA // MN và 2OM = OH = OA. b) Chứng minh AC/AB = AH/AO. c) Chứng minh EA/MA = EH/MH. d) Chứng minh DB = MB. Với những câu hỏi phong phú và đa dạng, chắc chắn đề thi sẽ giúp các em học sinh rèn luyện kỹ năng giải bài toán và củng cố kiến thức Toán một cách hiệu quả. Hãy cùng nhau chuẩn bị kỹ lưỡng và tự tin để đối mặt với bài thi sắp tới nhé!
Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Long Biên Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Long Biên Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Long Biên Hà Nội Đề thi học kì 1 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Long Biên Hà Nội Chào các thầy cô giáo và các em học sinh lớp 9, dưới đây là đề thi học kì 1 môn Toán lớp 9 năm học 2020 - 2021 của phòng Giáo dục và Đào tạo Long Biên, thành phố Hà Nội. Hãy cùng Sytu điểm qua một số câu hỏi trong đề thi này nhé: 1. Cho tam giác ABC có ba đường cao AH, BE, CK cắt nhau tại M. Hãy chứng minh rằng bốn điểm A, E, M, K cùng thuộc một đường tròn. 2. Gọi F là trung điểm của BC. Chứng minh rằng tam giác AKB đồng dạng với tam giác AEC và EF là tiếp tuyến của đường tròn nội tiếp tam giác AMO. 3. Tính diện tích của tam giác ABC và tam giác HEK khi biết rằng tỉ số diện tích giữa chúng là 4/3. Chứng minh rằng cosAcosC = cosB. 4. Cho đường thẳng y = x + d và đường thẳng y = mx + 1 + d. Tìm giá trị của m để hai đường thẳng cắt nhau tại một điểm có tung độ bằng 2020. 5. Cho các số thực x, y, z thỏa mãn điều kiện x + y + z = 1 và x^2 + y^2 + z^2 = 30. Hãy tìm giá trị nhỏ nhất của biểu thức P = xyz. Hy vọng rằng đề thi này sẽ giúp các em ôn tập và chuẩn bị tốt cho kỳ thi học kì 1 sắp tới. Chúc các em thành công!
Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Đống Đa Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Đống Đa Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Đống Đa Hà Nội Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Đống Đa Hà Nội Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 bản đề thi học kì 1 môn Toán năm học 2020 - 2021 do phòng Giáo dục và Đào tạo quận Đống Đa, Hà Nội biên soạn. Trích đề thi học kì 1 môn Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Đống Đa - Hà Nội: Một vệ tinh nhân tạo địa tĩnh chuyển động theo một quỹ đạo tròn cách bề mặt Trái Đất một khoảng 35786 km, vị trí xa nhất trên bề mặt Trái Đất có thể nhận tín hiệu từ vệ tinh này ở cách vệ tinh một khoảng là bao nhiêu km? (ghi kết quả gần đúng chính xác đến hàng đơn vị). Cho đường tròn O R đường kính AB. Kẻ tiếp tuyến Ax, lấy điểm P trên Ax AP R. Từ P kẻ tiếp tuyến PM của O R. Chứng minh rằng bốn điểm A P M O cùng thuộc một đường tròn. Cho đường thẳng d y x 2 3 và đường thẳng d y m x 1 5 (m là tham số m 1). Tìm m để hai đường thẳng d và d' cắt nhau tại điểm A nằm bên trái trục tung. Bạn hãy thực hiện các bước và tính toán cẩn thận để đạt kết quả chính xác trong đề thi này. Chúc các em học sinh thành công!
Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Hoàn Kiếm Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Hoàn Kiếm Hà Nội Bản PDF - Nội dung bài viết Đề thi học kì 1 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Hoàn Kiếm Hà Nội Đề thi học kì 1 Toán lớp 9 năm 2020 - 2021 phòng GD&ĐT Hoàn Kiếm Hà Nội Chúng ta đã có trong tay đề thi học kì 1 môn Toán lớp 9 năm học 2020 - 2021 của phòng Giáo dục và Đào tạo Hoàn Kiếm, Hà Nội. Đề thi này đưa ra những bài toán thú vị và cung cấp cho học sinh cơ hội thể hiện khả năng giải toán, tư duy logic và khả năng xử lý vấn đề. Trích dẫn một số câu hỏi từ đề thi: Trong mặt phẳng tọa độ Oxy, với hai đường thẳng d: y = 2x + 3 và d': y = mx + 2. Hãy vẽ đường thẳng d trong hệ tọa độ Oxy và tìm các giá trị của m để dường thẳng d song song với d'. Tìm giá trị nguyên của m để hai đường thẳng d và d' cắt nhau tại điểm có hoành độ là số nguyên. Cho đường tròn O có đường kính AB. Trên tia tiếp tuyến của O tại A, lấy điểm M. Đường thẳng MB cắt đường tròn O tại C. Hãy chứng minh tam giác ABC vuông tại A và MA2 = MC*MB. Tiếp theo, kẻ đường thẳng vuông góc với OM tại I và cắt đường tròn O tại D, chứng minh rằng bốn điểm A, M, C, D thuộc cùng một đường tròn. Đề cho a, b, c là các số thực không âm thỏa mãn a*b*c = 1. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức P = ab*c + bc*a + ca*b. Đề thi này không chỉ giúp học sinh củng cố kiến thức mà còn khuyến khích sự sáng tạo, tư duy và khả năng giải quyết vấn đề. Chúc các em học sinh tự tin và thành công trong kỳ thi!