Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề thể tích khối đa diện - Phạm Thu Hiền

Tài liệu gồm 30 trang hệ thống hóa lý thuyết thể tích khối đa diện và hướng dẫn giải một số bài toán thể tích khối đa diện điển hình. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh 12. Nội dung chuyên đề: Vấn đề 1 : Thể tích vật thể Thể tích vật thể K là phần mà vật thể đó chiếm chổ trong không gian Thể tích của vật thể K được kí hiệu V. V là một số lớn hơn 0 thỏa mãn các tính chất sau: 1. Hai khối đa diện bằng nhau thì thể tích bằng nhau 2. Thể tích khối lập phương bằng 1 thì V = 1 3. Nếu một khối đa diện được phân chia thành các khối đa diện thì thể tích khối ban đầu bằng tổng thể tích các khối đã phân chia Vấn đề 2 : Thể tích khối chóp Để tính thể tích khối chóp ta cần tính được chiều cao và diện tích đáy [ads] 1. Tính chiều cao Ta chính xác hóa chân đường cao + Hai đường xiên bằng nhau khi và chỉ khi hai hình chiếu bằng nhau, suy ra hình chóp có các cạnh bên bằng nha thì chân đường cao là tâm đường tròn ngoại tiếp đa giác đáy + Hai mặt phẳng vuông góc với nhau. Đường thẳng nào nằm trong mặt phẳng này mà vuông góc với giao tuyến thì vuông góc với mặt phẳng kia. Suy ra cách tìm hình chiếu H của A trên mp (P): • Tìm mặt phẳng pQq chứa A sao cho (Q) ⊥ (P) • Xác định giao tuyến d của (P) và (Q) • Trong (Q) dựng AH ⊥ d tại H + Hai mặt phẳng cắt nhau cùng vuông góc với một mặt phẳng thì giao tuyến của nó vuông góc với mặt phẳng đó + Hình chóp có các mặt bên tạo với đáy một góc bằng nhau thì chân đường cao trùng với tâm đường tròn nội tiếp đa giác đáy 2. Tính diện tích đáy: Sử dung các công thức tính diện tích tam giác, tứ giác … Vấn đề 3 : Thể tích khối lăng trụ 1. Công thức tính thể tích khối lăng trụ V = B.h, với B là diện tích đáy, h là chiều cao 2. Một số hình lăng trụ đặc biệt a. Hình lăng trụ đứng: Lăng trụ có cạnh bên vuông với đáy b. Hình lăng trụ đều : Lăng trụ đứng và đáy là đa giác đều c. Hình hộp : Lăng trụ và đáy là hình bình hành d. Hình hộp đứng: Lăng trụ đứng và đáy là hình bình hành Vấn đề 4 : Tỉ số thể tích

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm tỉ số thể tích
Tài liệu gồm 56 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tỉ số thể tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM 1. Kỹ thuật đổi đỉnh (đáy không đổi). 2. Kỹ thuật chuyển đáy (đường cao không đổi). 3. Tỉ số thể tích của khối chóp. 4. Tỉ số thể tích của khối lăng trụ. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1. Tỉ số thể tích của khối chóp. + Dạng 2: Tỉ số thể tích khối lăng trụ. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối lăng trụ
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối lăng trụ, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI + Dạng 1: Thể tích khối lăng trụ đứng. + Dạng 2: Thể tích khối lăng trụ xiên. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm thể tích khối chóp
Tài liệu gồm 48 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề thể tích khối chóp, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 1. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Thể tích khối chóp có đường cao sẵn có. Dạng 2: Thể tích khối chóp có mặt bên vuông góc với đáy. Dạng 3: Thể tích khối chóp đều. + Khối chóp tam giác đều. + Khối chóp tứ giác đều. Dạng 4: Thể tích một số khối chóp đặc biệt. + Khối chóp có các cạnh bên bằng nhau. + Khối chóp có các cạnh bên tạo với đáy các góc bằng nhau. + Khối chóp có các mặt bên đều tạo với đáy các góc bằng nhau. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải
Tài liệu gồm 74 trang, được biên soạn bởi tác giả Phùng Hoàng Em, tuyển tập 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng có đáp án và lời giải chi tiết. Trích dẫn tài liệu 05 đề ôn tập cuối chương khối đa diện và thể tích của chúng: Câu 1. Thể tích của một khối chóp có diện tích đáy bằng 4 dm2 và chiều cao bằng 6 dm là? Câu 2. Thể tích của một khối lăng trụ có diện tích đáy bằng B và chiều cao bằng h là? Câu 3. Tính thể tích V của khối lập phương có cạnh bằng 2cm. Câu 4. Tính thể tích khối lăng trụ tam giác đều ABC.A0B0C0 biết tất cả các cạnh của lăng trụ đều bằng a. Câu 5. Tính thể tích V của khối lăng trụ ABC.A0B0C0 biết thể tích của khối chóp C0.ABC bằng a3. Câu 6. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a; AD = 3a. Cạnh bên SA vuông góc với đáy (ABCD) và SA = a. Tính thể tích V của khối chóp S.ABCD. Câu 7. Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = a, OB = b, OC = c. Tính thể tích khối tứ diện OABC. Câu 8. Gọi V1 là thể tích của khối lập phương ABCD.A0B0C0D0, V2 là thể tích khối tứ diện A0ABD. Hệ thức sào sau đây là đúng? Câu 9. Thể tích khối tứ diện đều cạnh a√3 bằng? Câu 10. Tổng diện tích các mặt của một hình lập phương bằng 150. Thể tích của khối lập phương đó là?