Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ

Nội dung Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ Bản PDF - Nội dung bài viết Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ Đề vào 10 môn Toán (chuyên Toán) 2022 2023 trường chuyên Hùng Vương Phú Thọ Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (dành cho thí sinh thi chuyên Toán) năm học 2022 – 2023 của trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề vào 10 môn Toán (chuyên Toán) 2022 – 2023 trường chuyên Hùng Vương – Phú Thọ: + Trong mặt phẳng tọa độ Oxy, cho điểm A(14,6); 20,22. Gọi H là hình chiếu vuông góc của A trên trục Ox. Hãy tìm số điểm nguyên nằm trong tam giác OAH (điểm nguyên có hoành độ và tung độ là các số nguyên). + Cho hai đường tròn (O), (R) và (O'), (R'); cắt nhau tại hai điểm A và B ((R), (R') và (O), (O') thuộc hai nửa mặt phẳng đối nhau bờ AB). Đường thẳng AO cắt (O') và (O') lần lượt tại C và M, đường thẳng AO' cắt (O) và (O') lần lượt tại N và D (C, D, M, N khác A). Gọi K là trung điểm của CD, H là giao điểm của CN và DM. a) Chứng minh rằng năm điểm M, N, O, K, B cùng thuộc một đường tròn. b) Gọi I là đường tròn ngoại tiếp tam giác HCD; E là điểm đối xứng của C qua B; P là giao điểm của AE và HD; F là giao điểm của BH với I (F khác H); Q là giao điểm của CF với BP. Chứng minh rằng BP//BQ. c) Chứng minh rằng ∠IBP = 90°. + Cho n là số nguyên dương sao cho 4, 13, n và 5, 16, n là các số chính phương. Chứng minh rằng 2023, 45, n chia hết cho 24. File WORD (dành cho quý thầy, cô): [link đến file WORD].

Nguồn: sytu.vn

Đọc Sách

Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh - TP. HCM
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán trường THCS Lương Thế Vinh – TP. HCM gồm 6 bài tập tự luận, đề thi có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O; R) và điểm M nằm ngoài (O). Vẽ 2 tiếp tuyến MA, MB và cát tuyến MCD của (O) (A, B là tiếp điểm, C nằm giữa M và D; A và C nằm khác phía đối với đường thẳng MO). Gọi I là trung điểm CD. [ads] a) Chứng minh: MB^2 = MC.MD b) Chứng minh tứ giác AOIB nội tiếp c) Tia BI cắt (O) tại J. Chứng minh: AD^2 = AJ.MD d) Đường thẳng qua I song song với DB cắt AB tại K, tia CK cắt OB tại G. Tính bán kính đường tròn ngoại tiếp ∆CIG theo R + Hàng tháng một người gửi vào ngân hàng 5.000.000đ với lãi suất 0,6%/tháng. Hỏi sau 15 tháng người đó nhận được số tiền cả gốc lẫn lãi là bao nhiêu? Biết rằng hàng tháng người đó không rút lãi ra.
Tuyển chọn các đề thi tuyển sinh vào lớp 10 môn Toán - Nguyễn Hoàng Nam
+ Được tuyển chọn từ tổng hợp các đề thi hay nhất của các tỉnh thành phố năm học 2013 – 2014. + Có bổ sung một số câu hỏi trọng tâm thường ra thi. + Các bài hình học khó đều có hình vẽ sẵn, được ký hiệu và ghi sơ đồ để hướng dẫn học sinh suy nghĩ.
Tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán
Tài liệu gồm 32 trang tuyển tập 21 đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán. Một số đề có hướng dẫn giải.
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo - Vĩnh Phúc lần 1
Đề thi thử tuyển sinh vào lớp 10 năm 2017 môn Toán Phòng GD và ĐT Tam Đảo – Vĩnh Phúc lần 1 gồm 4 câu hỏi trắc nghiệm và 5 câu tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Hai vòi nước cùng chảy vào một cái bể không có nước thì trong 5 giờ sẽ đầy bể. Nếu vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 4 giờ thì được 2/3 bể nước. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu mới đầy bể. [ads] + Cho đường tròn (O), M là một điểm nằm ngoài đường tròn (O). Qua M kẻ hai tiếp tuyến MA, MB đến đường tròn (O) với A, B là các tiếp điểm; MPQ là một cát tuyến không đi qua tâm của đường tròn (O), P nằm giữa M và Q. Qua P kẻ đường thẳng vuông góc với OA cắt AB, AQ tương ứng tại R, S. Gọi trung điểm đoạn PQ là N. Chứng minh rằng: a) Các điểm M, A, N, O, B cùng thuộc một đường tròn, chỉ rõ bán kính của đường tròn đó. b) PR = RS.