Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 11 năm 2018 - 2019 trường Nguyễn Quang Diêu - An Giang

Nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 11 trong giai đoạn học kỳ 2 năm học 2018 – 2019, vừa qua, trường THPT Nguyễn Quang Diêu (xã Tân An, thị xã Tân Châu, tỉnh An Giang) đã tổ chức kỳ thi kiểm tra học kỳ 2 môn Toán 11 năm học 2018 – 2019. Đề thi HK2 Toán 11 năm 2018 – 2019 trường Nguyễn Quang Diêu – An Giang có mã đề 178, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận theo thang điểm 7:3, phần trắc nghiệm gồm 30 câu, phần tự luận gồm 3 câu, thời gian làm bài thi 90 phút, đề thi có đáp án trắc nghiệm và lời giải chi tiết tự luận. [ads] Trích dẫn đề thi HK2 Toán 11 năm 2018 – 2019 trường Nguyễn Quang Diêu – An Giang : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết cạnh bên SA vuông góc với mặt đáy (ABCD) và SA = a√2. a) Chứng minh BD vuông góc (SAC). b) Tính góc giữa đường thẳng SC và mặt đáy (ABCD). + Một chất điểm chuyển động theo quy luật S = -1/3.t^3 + 4t^2 + 9t với t là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và S là quãng đường vật chuyển động trong thời gian đó. Hỏi trong khoảng thời gian 3 giây, kể từ lúc bắt đầu chuyển động, vận tốc lớn nhất của chất điểm là bao nhiêu? + Viết phương trình tiếp tuyến của đồ thị hàm số (C): y = (x – 1)/(2x – 3) tại giao điểm của (C) và trục hoành.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Công Trứ - TP HCM
Ngày … tháng 04 năm 2021, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán 11 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 05 bài toán, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD) và ABCD là hình thang vuông tại A, B. Biết AB = BC = a, AD 2a SA a 2. Gọi K là trung điểm của AD. a) Chứng minh: BK (SAC), (SBC) (SAB). b) Chứng minh tam giác SCD vuông tại C. c) Xác định và tính góc giữa (SCD) và (ABCD). d) Tính khoảng cách từ điểm K đến (SCD). + Cho đồ thị hàm số 3 (C) y f (x) 2x 7x 1. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng (d): y = – x + 5. + Cho y 4sin x 3cosx 5 x . Chứng minh rằng: 0 y 10 với mọi giá trị của x.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Mạc Đĩnh Chi - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Mạc Đĩnh Chi, quận 6, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Nguyễn Thượng Hiền - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Nguyễn Thượng Hiền, quận Tân Bình, thành phố Hồ Chí Minh; đề thi gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút.
Đề thi HK2 Toán 11 năm 2020 - 2021 trường THPT Phan Đình Phùng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi HK2 Toán 11 năm học 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội; đề thi mã đề 123 gồm 04 trang với 35 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút; đề thi có đáp án và lời giải chi tiết mã đề 123, 246, 357, 479. Trích dẫn đề thi HK2 Toán 11 năm 2020 – 2021 trường THPT Phan Đình Phùng – Hà Nội : + Cho đường thẳng a không vuông góc với mặt phẳng (P). Khi đó, góc giữa đường thẳng a và mặt phẳng (P) là góc giữa? A. a và hình chiếu vuông góc của a lên (P). B. a và một đường thẳng bất kì cắt (P). C. a và đường vuông góc với (P). D. a và đường thẳng bất kì nằm trong (P). + Tìm mệnh đề sai trong các mệnh đề sau? A. Hình hộp là hình lăng trụ. B. Hình hộp chữ nhật là hình lăng trụ đứng. C. Có hình lăng trụ không phải là hình hộp. D. Hình lăng trụ là hình hộp. + Cho phương trình 4 2 2 5 10 x xx. Khẳng định nào sau đây là đúng? A. Phương trình đã cho không có nghiệm trong khoảng (−2;0). B. Phương trình đã cho không có nghiệm trong khoảng (−1;1). C. Phương trình đã cho chỉ có một nghiệm trong khoảng (−2;1). D. Phương trình đã cho có ít nhất một nghiệm trong khoảng (0;2).