Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT Như Thanh Thanh Hoá

Nội dung Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT Như Thanh Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT Như Thanh Thanh Hoá Đề KSCL Toán vào năm 2023 2024 phòng GD ĐT Như Thanh Thanh Hoá Xin chào quý thầy cô và các em học sinh lớp 9! Đây là đề khảo sát chất lượng môn Toán dành cho học sinh dự thi vào lớp 10 THPT năm học 2023 – 2024, do phòng Giáo dục và Đào tạo huyện Như Thanh, tỉnh Thanh Hoá soạn thảo. Đề thi bao gồm các câu hỏi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu trong đề thi: 1. Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = ax + (b – 1). Tìm a, b biết đường thẳng (d) đi qua điểm A(2;1) và cắt trục tung tại điểm có tung độ bằng -3. 2. Cho phương trình 2x^2 - 6x + 6m = 0 (với m là tham số). Tìm m để phương trình đã cho có hai nghiệm x1 và x2 thỏa mãn: 3x1^2 + 12x1 + 1 = 0 và 3x2^2 + 12x2 + 1 = 0. 3. Cho đường tròn (O) có hai đường kính AB và MN vuông góc với nhau. Trên tia đối của tia MA lấy điểm C (C khác M). Kẻ MH vuông góc với BC (H thuộc BC). Hãy chứng minh rằng BOMH là tứ giác nội tiếp và các bước tiếp theo. File WORD chi tiết có thể tải về để sử dụng. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề KSCL giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Trần Mai Ninh Thanh Hóa
Nội dung Đề KSCL giữa học kì 1 (HK1) lớp 9 môn Toán năm 2020 2021 trường THCS Trần Mai Ninh Thanh Hóa Bản PDF - Nội dung bài viết Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa Đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa bao gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài là 90 phút, và đề thi đi kèm với lời giải chi tiết. Trích dẫn đề KSCL giữa kỳ 1 Toán lớp 9 năm 2020 – 2021 trường THCS Trần Mai Ninh – Thanh Hóa: Cho biểu thức B. Câu a yêu cầu tìm điều kiện của b để B là biểu thức xác định và rút gọn B. Câu b yêu cầu tìm giá trị của b để B lớn hơn -1. Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Câu a yêu cầu tính độ dài của đoạn AH khi AB = 6cm, AC = 8cm. Câu b yêu cầu chứng minh một phương trình liên quan đến các đỉnh và đoạn trong tam giác. Câu c yêu cầu chứng minh một mệnh đề kí hiệu về các đoạn trong tam giác. Rút gọn các biểu thức A và B. Đề thi mang tính thách thức và khuyến khích học sinh rèn luyện kỹ năng giải toán, tư duy logic và phân tích. Hy vọng các em sẽ có kết quả tốt trong kì thi này.