Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Thanh Sơn - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Thanh Sơn, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Thanh Sơn – Phú Thọ : + Cho tam giác ABC vuông tại A có đường cao AH. Qua B vẽ đường thẳng vuông góc với BC cắt đường thẳng AC tại D. Tia phân giác của góc C cắt AB tại N và BD tại M. Hệ thức nào sau đây đúng? + Sau buổi sinh hoạt ngoại khóa, nhóm của Hằng rủ nhau đi ăn kem. Do quán mới khai trương nên có khuyến mại, bắt đầu từ ly kem thứ 5 giá mỗi ly kem được giảm 1500 (đồng) so với giá ban đầu. Nhóm của Hằng mua 9 ly kem với số tiền là 154 500 (đồng). Hỏi nếu nhóm của Hằng mua 15 ly kem thì hết bao nhiêu tiền? + Cho tam giác ABC nhọn, nội tiếp đường tròn (O; R), đường kính AK. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường tròn (O) tại hai điểm P, Q (P và C nằm khác phía đối với AB). Gọi M là trung điểm của BC. a) Chứng minh: Tứ giác BHCK là hình bình hành và OAC BAH. b) Chứng minh: 2 2 AP AQ 2AD OM. c) Khi BC cố định và A di động trên đường tròn (O). Chứng minh đường thẳng đi qua H và song song với AO luôn đi qua một điểm cố định.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh : + Trên bảng có 2022 số tự nhiên khác nhau từ 1 đến số 2022. Lần thứ nhất xóa đi 2 số bất kì và viết tổng của chúng lên bảng, lúc này trên bảng còn 2021 số. Lần thứ hai xóa đi 2 số bất kì và viết tổng của chúng lên bảng và cứ tiếp tục như vậy. Hỏi lần thứ 2021, trên bảng còn lại số nào? + Cho hình vuông cạnh 2a và hai nửa đường tròn bán kính cùng bằng a, tiếp xúc với nhau như hình vẽ. Một đường tròn (I) tiếp xúc với hai nửa đường tròn đã cho và tiếp xúc với cạnh hình vuông. Tính diện tích hình tròn (I). + Cho đường tròn (O) đường kính BC và điểm A di động trên đường tròn (O) (A khác B và C). Gọi H là chân đường vuông góc kẻ từ A đến cạnh BC của tam giác ABC. Gọi D là trung điểm của HC. Qua H kẻ đường thẳng vuông góc với AD cắt AB tại E. a) Chứng minh rằng HD.HE = AD.AH b) Chứng minh rằng B là trung điểm của AE. Tìm quỹ tích điểm E.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Bắc Giang; đề thi gồm 20 câu trắc nghiệm (6.0 điểm) và 04 câu tự luận (4.0 điểm), thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết (đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Nguyễn Ngọc Hùng – giáo viên Toán trường THCS Hoàng Xuân Hãn – Hà Tĩnh); kỳ thi được diễn ra vào ngày 26 tháng 02 năm 2022. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Bắc Giang : + Cho đường tròn (O) ngoại tiếp tam giác đều ABC. Gọi M là điểm thuộc cung nhỏ BC của đường tròn (O). Biết MA = 6cm, MB = 4cm. Độ dài đoạn MC bằng: A. MC = 5cm B. MC = 2cm C. MC = 3cm D. MC = 10cm? + Biết đường thẳng y = 3x + m cắt trục hoành tại điểm A, cắt trục tung tại điểm B. Tập hợp tất cả các giá trị của tham số m để diện tích tam giác OAB bằng 6 (O là gốc tọa độ) là? + Gọi S là tập hợp tất cả các giá trị của tham số m để tích các hệ số góc của hai đường thẳng y = (m – 1)x + 2021 và y = mx + 2022 (với m khác 1 và m khác 0) bằng 6. Tính tổng các phần tử của S.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Trà Vinh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Trà Vinh. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Trà Vinh : + Cho a b c là độ dài ba cạnh của một tam giác. Chứng minh rằng. + Cho tam giác ABC vuông tại A, biết AB = 3cm; AC = 4,5cm. Vẽ đường tròn tâm B bán kính BA. Trên tia đối của tia AC lấy điểm D sao cho tam giác BCD vuông tại B. Kẻ các tiếp tuyến CN, DM với đường tròn (M, N là tiếp điểm, khác điểm A). a) Chứng minh ba điểm M, B, N thẳng hàng. b) Tính diện tích tứ giác DMNC. c) Gọi H là giao điểm của AB và CN. Tính độ dài HB và HN. + Cho tam giác vuông ABC có độ dài cạnh huyền BC = a. Goi AH là đường cao của tam giác (H thuộc BC), D và E lần lượt là hình chiếu của H trên AC và AB. Tìm giá trị lớn nhất của diện tích tứ giác ADHE.
Đề thi chọn học sinh giỏi Toán 9 năm 2021 - 2022 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn học sinh giỏi Toán 9 năm 2021 – 2022 sở GD&ĐT Nam Định : + Trên một mặt bàn phẳng có 2021 đồng xu kích thước bằng nhau, mỗi đồng xu có hai mặt trong đó có một mặt màu xanh và một mặt màu đỏ, đồng thời tất cả các đồng xu đều ngửa mặt màu xanh lên trên mặt bàn. Thực hiện trò chơi sau đây: mỗi lượt chơi phải đổi mặt 10 đồng xu nào đó trên mặt bàn. Hỏi sau 2022 lượt chơi có thể nhận được tất cả 2021 đồng xu trên mặt bàn đều ngửa mặt màu đỏ lên trên hay không? Hãy giải thích vì sao? + Xét tam giác ABC có độ dài các cạnh là abc thay đổi và thỏa mãn c b abc 2. Tìm giá trị nhỏ nhất của biểu thức 354 P bca acb abc. + Cho tam giác ABC vuông tại A AB AC có AH là đường cao. Lấy D là một điểm thuộc miền trong của tam giác AHC sao cho AH đi qua trung điểm của BD. Gọi E F theo thứ tự là giao điểm của AH với đường thẳng CD và BD. Qua E kẻ đường thẳng tiếp xúc với đường tròn đường kính CD tại điểm M (A và M thuộc cùng một nửa mặt phẳng có bờ là CD). Gọi N là giao điểm thứ hai của đường thẳng BD với đường tròn đường kính CD. Chứng minh rằng: 1) Tứ giác ABCN nội tiếp một đường tròn và 0 ANB CAH 90. 2) Tam giác EMD đồng dạng với tam giác ECM và MD AB ED BF BN MC EC 3) Ba điểm AM N thẳng hàng.