Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 lần 1 năm 2022 trường THCS Nghĩa Tân - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm 2022 trường THCS Nghĩa Tân, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề thi thử Toán vào lớp 10 lần 1 năm 2022 trường THCS Nghĩa Tân – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Năm ngoái, hai đơn vị sản xuất nông nghiệp thu hoạch được 820 tấn thóc. Năm nay, đơn vị thứ nhất làm vượt mức 15%, đơn vị thứ hai làm vượt mức 20% so với năm ngoái. Do đó cả hai đơn vị thu hoạch được 965 tấn thóc. Hỏi năm nay mỗi đơn vị thu hoạch được bao nhiêu tấn thóc? + Một dụng cụ làm bằng thủy tinh có dạng hình nón có chiều cao là 12 cm, đường kính đáy là 18cm. Tính thể tích dung dịch khi được đựng đầy trong dụng cụ đó (lấy pi = 3,14). + Cho nửa đường tròn tâm O, đường kính AB R 2. Lấy điểm C thuộc nửa đường tròn CA CB. Qua O kẻ đường thẳng d vuông góc với AB, đường thẳng d cắt AC, nửa đường tròn và BC lần lượt tại D E F. a) Chứng minh AOCF là tứ giác nội tiếp đường tròn. b) Chứng minh OB AD OD BF c) Tiếp tuyến của nửa đường tròn qua C cắt d tại I. Chứng minh I là trung điểm FD. Tìm vị trí của điểm C trên nửa đường tròn để diện tích của tam giác ABC gấp 6 lần diện tích của tam giác DIC.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 - 2023 sở GDĐT Cao Bằng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cao Bằng; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn đề tuyển sinh lớp 10 THPT chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Cao Bằng : + Cho Parabol (P): y = mx2 và đường thẳng (d): y = 2x – m2 (m là tham số m > 0). Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A và B. Chứng minh rằng khi đó hai điểm A, B nằm bên phải trục tung. + Cho nửa đường tròn (O;R) đường kính AB. Đường thẳng d là tiếp tuyến của (O) tại B. Trên cung AB lấy điểm M (M khác A và B). Tia AM cắt đường thẳng d tại C. Gọi I là trung điểm của AM, tia IO cắt đường thẳng d tại N. a) Chứng minh rằng tứ giác OBCI nội tiếp. b) Chứng minh AI.IC = IO.IN. c) Gọi E là hình chiếu của O trên AN. Chứng minh rằng? d) Xác định vị trí của điểm M để 2AM + AC đạt giá trị nhỏ nhất. + Cho hệ phương trình (m là tham số). Tìm các giá trị nguyên của m để hệ phương trình đã cho có nghiệm duy nhất (x;y) sao cho biểu thức A = 3x – y nhận giá trị nguyên.
Đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 - 2023 sở GDĐT Tiền Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên Toán) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Tiền Giang; kỳ thi được diễn ra vào ngày 18 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022 – 2023 sở GD&ĐT Tiền Giang : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = ax2 qua M(3;3) và đường thẳng (d): y = -1/2.x + m (với m là tham số). Xác định phương trình của parabol (P), từ đó tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt A(xA;yA), B(xB;yB) khác gốc tọa độ sao cho? + Gọi x1, x2 là hai nghiệm của phương trình x2 + mx + 1 = 0 và x3, x4 là hai nghiệm của phương trình x2 + nx + 1 = 0 với m và n là các tham số thỏa mãn. Chứng minh rằng. 3) Cho hai số x và y liên hệ với nhau bởi đẳng thức. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x – y + 2. + Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn tâm O, có ba đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) cắt nhau tại H. Tia AO cắt BC tại M và cắt (O) tại N; gọi P, Q lần lượt là hình chiếu của M trên AB, AC. Chứng minh: 1) DH là tia phân giác của EDF. 2) HE/HF = NB/NC. 3) HE.MQ.HB = HF.MP.NC.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 22 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau : + Cho Parabol (P): y = 3/2.x2 và đường thẳng (d): y = 2mx + 1. a) Chứng tỏ đường thẳng (d) luôn cắt Parabol (P) tại hai điểm phân biệt. b) Khi m = 1/4, vẽ Parabol (P) và đường thẳng (d) trên cùng mặt phẳng tọa độ Oxy và tìm tọa độ giao điểm của chúng. + Một xí nghiệp chế biến thủy sản dự kiến đóng 3 000 hộp tôm xuất khẩu trong một thời gian nhất định. Trong 6 ngày đầu họ thực hiện đúng tiến độ, những ngày sau đó mỗi ngày đóng vượt 10 hộp tôm xuất khẩu nên chẳng những hoàn thành sớm được 1 ngày mà còn vượt mức 60 hộp tôm xuất khẩu nữa. Hỏi theo dự kiến, mỗi ngày xí nghiệp đó đóng bao nhiêu hộp tôm xuất khẩu? + Cho số M (trong đó dấu căn bậc ba được viết lặp lại 2022 lần). Chứng minh rằng 2022 < M < 2023.
Đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 - 2023 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Cà Mau; kỳ thi được diễn ra vào ngày 21 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (không chuyên) năm 2022 – 2023 sở GD&ĐT Cà Mau : + Ngày của Cha hay còn gọi là Father’s Day là ngày để con bày tỏ lòng biết ơn và hiếu thảo đối với cha mình. Tương tự như Ngày của Mẹ, ngày của Cha cũng không cố định cụ thể mà được quy ước chọn ngày chủ nhật tuần thứ 3 của tháng 6 hàng năm. Nhân dịp lễ “Ngày của Cha – 19/6/2022”, siêu thị A đã giảm giá 18% cho mỗi đôi giày và 20% cho mỗi chiếc cà vạt. Bạn Duy đã dùng 834 700 đồng để mua một đôi giày và một chiếc cà vạt ở siêu thị A làm quà tặng ba của mình; Duy tính nhẩm: cùng ở siêu thị A, cùng số lượng, cùng mẫu mã nhưng nếu mua vào ngày 18/6/2022 (ngày mà siêu thị A không có khuyến mãi giảm giá các mặt hàng) thì chỉ với số tiền tiết kiệm được là 1 025 000 đồng bạn ấy không đủ tiền để mua hai món hàng này. Em hãy cho biết, bạn Duy tính nhẩm như vậy có đúng không? Biết rằng, nếu không giảm giá thì tiền mua mỗi đôi giày gấp 11 lần tiền mua mỗi chiếc cà vạt. + Cho phương trình: x2 + kx + 2 = 0 (k là tham số). a) Tìm k để phương trình có nghiệm kép, tìm nghiệm kép đó. b) Tìm k để phương trình có hai nghiệm x1, x2 thỏa mãn? + Cho điểm A nằm ngoài đường tròn (O;R) sao cho OA = 2R. Kẻ hai tiếp tuyến AB, AC với đường tròn (O;R) (B và C là các tiếp điểm), tia AC cắt BC tại I. Điểm H thuộc đoạn thẳng BI (H khác B và H khác I). Đường thẳng d vuông góc với OH tại H; d cắt AB và AC lần lượt tại P và Q. a) Chứng minh tứ giác OHBP nội tiếp đường tròn. b) Chứng minh rằng: OP = OQ. c) Khi H là trung điểm của đoạn thẳng BI, tính độ dài đoạn thẳng BC và diện tích của OPQ theo R.