Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng giới hạn dãy số

Tài liệu gồm 37 trang, tóm tắt lý thuyết trọng tâm, các dạng toán và bài tập chủ đề giới hạn dãy số, có đáp án và lời giải chi tiết, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 4: Giới Hạn. Tài liệu được biên soạn bởi nhóm tác giả: PGS.TS Lê Văn Hiện, Trần Minh Ngọc, Nguyễn Hồng Quân, Nguyễn Đình Hoàn, Lý Công Hiếu, Nguyễn Văn Vũ, Nguyễn Đỗ Chiến, Nguyễn Ngọc Chi, Nguyễn Văn Ái, Nguyễn Hoàng Việt, Nguyễn Thị Thắm, Nguyễn Vũ Minh, Phan Xuân Dương, Nguyễn Hữu Bắc. Kiến thức: + Hiểu được khái niệm giới hạn của dãy số. + Biết được một số định lí giới hạn của dãy số, cấp số nhân lùi vô hạn. Kĩ năng: + Áp dụng khái niệm giới hạn dãy số, định lí về giới hạn của dãy số vào giải các bài tập. + Biết cách tính giới hạn của dãy số. + Biết cách tính tổng của một cấp số nhân lùi vô hạn. I. LÍ THUYẾT TRỌNG TÂM. II. CÁC DẠNG BÀI TẬP. Dạng 1: Dãy số có giới hạn bằng định nghĩa. + Bài toán 1. Chứng minh dãy số có giới hạn 0 bằng định nghĩa. + Bài toán 2. Giới hạn của dãy số có số hạng tổng quát dạng phân thức. Dạng 2: Dãy số có giới hạn hữu hạn. + Bài toán 1. Sử dụng định nghĩa chứng minh rằng lim un = L. + Bài toán 2. Chứng minh một dãy số có giới hạn. + Bài toán 3. Tính giới hạn của dãy số bằng các định lí về giới hạn. + Bài toán 4. Tính tổng của cấp số nhân lùi vô hạn. Dạng 3. Dãy số có giới hạn vô cực. III. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI.

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm giới hạn có giải chi tiết trong các đề thi thử Toán 2018
Tài liệu gồm 80 trang tổng hợp các câu hỏi và bài toán trắc nghiệm giới hạn có lời giải chi tiết trong các đề thi thử Toán 2018. Trích dẫn tài liệu trắc nghiệm giới hạn có giải chi tiết trong các đề thi thử Toán 2018 : + (THPT Thạch Thành 2 – Thanh Hóa – lần 1 năm 2017 – 2018) Phát biểu nào trong các phát biểu sau là đúng? A. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm -x0. B. Nếu hàm số y = f(x) có đạo hàm trái tại x0 thì nó liên tục tại điểm đó. C. Nếu hàm số y = f(x) có đạo hàm phải tại x0 thì nó liên tục tại điểm đó. D. Nếu hàm số y = f(x) có đạo hàm tại x0 thì nó liên tục tại điểm đó. [ads] + (SGD Ninh Bình năm 2017 – 2018) Trong các giới hạn hữu hạn sau, giới hạn nào có giá trị khác với các giới hạn còn lại? + (THPT Quãng Xương 1 – Thanh Hóa năm 2017 – 2018) Cho hàm số f(x) xác định trên khoảng K chứa a. Hàm số f(x) liên tục tại x = a nếu?
Một số vấn đề cơ bản về giới hạn của dãy số - Nguyễn Hữu Hiếu
Tài liệu gồm 20 trang được biên soạn bởi thầy Nguyễn Hữu Hiếu trình bày một số vấn đề cơ bản về giới hạn của dãy số, bao gồm các định nghĩa, định lý, các dạng toán và bài tập có hướng dẫn giải.