Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh môn Toán lớp 11 năm 2018 2019 sở Quảng Ngãi

Nguồn: onluyen.vn

Đọc Sách

Đề thi HSG Toán 11 lần 1 năm 2023 - 2024 trường THPT Ngô Gia Tự - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán 11 lần 1 năm học 2023 – 2024 trường THPT Ngô Gia Tự, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104. Trích dẫn Đề thi HSG Toán 11 lần 1 năm 2023 – 2024 trường THPT Ngô Gia Tự – Vĩnh Phúc : + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a BAD 60 SA SB SC a 2. Gọi M là trung điểm của BC P là điểm trên cạnh SD sao cho SD SP 4. Mặt phẳng (α) đi qua các điểm M P và song song với AC. Tính diện tích thiết diện của hình chóp S ABCD khi cắt bởi mặt phẳng (α). + Cho tứ giác ABCD và S không thuộc mặt phẳng ABCD. Gọi M, N là hai điểm trên BC và SD. Xác định I, J lần lượt là giao điểm của BN và MN với SAC. Từ đó tìm bộ 3 điểm thẳng hàng trong những điểm sau: A. Ba điểm A, I, J thẳng hàng. B. Ba điểm C, I, J thẳng hàng. C. Ba điểm M, I, J thẳng hàng. D. Ba điểm K, I, K thẳng hàng. + Xác định vị trí của M khi 2 cos cos α A. M thuộc góc phần tư thứ I hoặc thứ III. B. M thuộc góc phần tư thứ I. C. M thuộc góc phần tư thứ I hoặc thứ IV. D. M thuộc góc phần tư thứ IV.
Đề thi thử HSG tỉnh Toán 11 năm 2023 - 2024 trường THPT Trần Văn Lan - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi thử chọn học sinh giỏi cấp tỉnh môn Toán 11 THPT năm học 2023 – 2024 trường THPT Trần Văn Lan, tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG tỉnh Toán 11 năm 2023 – 2024 trường THPT Trần Văn Lan – Nam Định : + Muốn đo chiều cao của tháp chàm Por Klong Garai ở Ninh Thuận người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12 m cùng thẳng hàng với chân C của tháp để đặt hai giác kế. Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1, B1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được góc 1 1 DAC 49 và 1 1 DB C 35. Tính chiều cao CD của tháp. + Trong một đợt dã ngoại, một trường học cần thuê xe chở 140 người và 9 tấn hàng. Nơi thuê xe có hai loại xe A và B, trong đó xe A có 10 chiếc và xe B có 9 chiếc. Một xe loại A cho thuê với giá 4 triệu đồng và một xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa 20 người và 0,6 tấn hàng, mỗi xe loại B có thể chở tối đa 10 người và 1,5 tấn hàng. Hỏi nhà trường phải thuê mỗi loại xe với số lượng bao nhiêu để chi phí thuê xe thấp nhất. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tất cả các cạnh bên đều bằng a. Gọi điểm M thuộc cạnh SD sao cho SD SM 3 điểm G là trọng tâm tam giác BCD. a) Gọi (α) là mặt phẳng chứa MG và song với CD. Xác định và tính diện tích thiết diện của hình chóp với mp(α) b) Xác định điểm P thuộc MA và điểm Q thuộc BD sao cho PQ song song với SC. Tính PQ theo a.
Tuyển tập đề thi học sinh giỏi Toán 11 sở GDĐT Quảng Bình (2010 - 2023)
Tài liệu gồm 94 trang, được tổng hợp bởi thầy giáo Nguyễn Minh Hiếu, tuyển tập 12 đề thi chọn học sinh giỏi môn Toán lớp 11 sở Giáo dục và Đào tạo tỉnh Quảng Bình (từ năm 2010 đến năm 2023), có đáp án và lời giải chi tiết. Mục lục : PHẦN I ĐỀ THI 1. 1 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2022 – 2023 3. 2 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2021 – 2022 5. 3 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2020 – 2021 7. 4 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2017 – 2018 9. 5 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2016 – 2017 10. 6 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2015 – 2016 11. 7 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2014 – 2015 13. 8 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2013 – 2014 15. 9 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2012 – 2013 17. 10 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2011 – 2012 18. 11 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2010 – 2011 19. 12 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2009 – 2010 20. PHẦN II LỜI GIẢI 21. 1 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2022 – 2023 23. 2 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2021 – 2022 31. 3 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2020 – 2021 39. 4 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2017 – 2018 48. 5 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2016 – 2017 52. 6 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2015 – 2016 56. 7 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2014 – 2015 63. 8 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2013 – 2014 69. 9 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2012 – 2013 74. 10 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2011 – 2012 79. 11 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2010 – 2011 82. 12 Đề thi chọn học sinh giỏi lớp 11 Quảng Bình năm học 2009 – 2010 87.
Đề thi chọn HSG Toán 11 năm 2022 - 2023 sở GDĐT Quảng Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 năm học 2022 – 2023 và chọn đội dự tuyển dự thi chọn học sinh giỏi Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm bài thi thứ nhất và bài thi thứ hai; kỳ thi được diễn ra vào ngày 04 tháng 04 năm 2023. Trích dẫn Đề thi chọn HSG Toán 11 năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho H là một đa giác đều có 252 đường chéo. Chọn ngẫu nhiên một tam giác có ba đỉnh là ba đỉnh của H. Tính xác suất để tam giác được chọn là một tam giác vuông không cân. Có bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau đồng thời tổng lập phương của ba chữ số đó chia hết cho 3. + Cho hình chóp S ABC và điểm M di động trên cạnh AB (M khác A B). Mặt phẳng luôn đi qua M đồng thời song song với cả hai đường thẳng SA và BC. a. Xác định thiết diện khi cắt hình chóp S ABC bởi mặt phẳng. Tìm vị trí của điểm M để thiết diện có diện tích lớn nhất. b. Điểm N nằm trên cạnh BC thỏa mãn 23 5 BA BC BM BN. Chứng minh rằng: mặt phẳng SMN luôn chứa một đường thẳng cố định khi M di động. c. Chứng minh rằng: 2 2 2 SA BC SC AB SB AC. + Cho tập hợp A n 1 3 5 … 2 1 (với n). Tìm số nguyên dương n nhỏ nhất sao cho tồn tại 12 tập con 1 2 12 B B B … của A thỏa mãn đồng thời các điều kiện sau?