Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử TN THPT 2020 môn Toán lần 3 trường Lương Thế Vinh - Hà Nội

Đề thi thử TN THPT 2020 môn Toán lần 3 trường Lương Thế Vinh – Hà Nội gồm có 04 mã đề: 101, 102, 103, 104; đề gồm 05 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử TN THPT 2020 môn Toán lần 3 trường Lương Thế Vinh – Hà Nội : + Năm nay con trai ông A đỗ vào trường THPT Lương Thế Vinh, thành phố Hà Nội. Để chuẩn bị cho con trai một khoản tiền đi học Đại học sau này, ông A gửi tiết kiệm một khoản là 200 triệu đồng với lãi suất ban đầu là 5%/năm, tiền lãi hàng năm được nhập vào gốc và sau một năm thì lãi suất tăng 0,2% so với năm trước đó. Hỏi khi con trai ông A bắt đầu đi học Đại học thì ông A có khoảng bao nhiêu tiền cho con? (kết quả làm tròn hai chữ số sau dấu phẩy). + Một người thợ được yêu cầu trang trí trên một bức tường hình vuông kích thước 4m × 4m bằng cách vẽ một hình vuông mới với các đỉnh là trung điểm các cạnh của hình vuông ban đầu, tô kín màu lên hai tam giác đối diện bằng cách sử dụng hai màu xanh và hồng (tham khảo hình vẽ). Quá trình vẽ và tô theo quy luật đó được lặp lại 4 lần. Tính số tiền sơn để người thợ đó hoàn thành công việc trang trí theo yêu cầu trên, biết tiền sơn màu xanh để sơn kín 1m2 là 100000 đ và tiền sơn màu hồng đắt gấp 1,5 lần so với tiền sơn màu xanh. [ads] + Một chiếc cổng có dạng parabol (như hình vẽ) có chiều cao của cổng là 2,8 m, chiều rộng là 3,2. Chi phí để hoàn thiện 1 m2 cánh cổng là 1,2 triệu đồng. Tính chi phí hoàn thiện cánh cổng nếu khoảng cách giữa cánh cổng và bờ tường là không đáng kể (kết quả làm tròn hai chữ số sau dấu phẩy).

Nguồn: toanmath.com

Đọc Sách

Đề thi thử Quốc gia 2016 môn Toán trường Lương Văn Cù - An Giang
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Lương Văn Cù – An Giang có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ bằng 3. Câu 3: a) Tìm số phức z. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Tính khoảng cách giữa hai điểm A và B. Viết phương trình mặt phẳng (a) đi qua A và song song với mặt phẳng (P). Câu 6: a) Biến đổi thành tích biểu thức lượng giác. b) Một trường Đại học dự kiến tuyển sinh dựa vào tổng điểm của 3 môn trong kì thi chung đó và có ít nhất một trong hai môn là Toán hoặc Văn. Hỏi trường Đại học đó có bao nhiêu phương án tuyển sinh?. Câu 7: Tính theo a thể tích khối chóp S.ABC. Xác định góc a để thể tích khối chóp S.ABC lớn nhất . Câu 8: Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. Câu 9: Giải hệ phương trình. Câu 10: Chứng minh bất đẳng thức.
Đề thi thử Quốc gia 2016 môn Toán trường Quảng Xương 3 - Thanh Hóa lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Quảng Xương 3 – Thanh Hóa lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số phân thức hữu tỉ. Câu 2: Tìm các điểm cực trị của đồ thị hàm số. Câu 3: a) Giải bất phương trình logarit. b) Giải phương trình mũ. Câu 4: Tính nguyên hàm Câu 5: Chứng minh trung điểm I của cạnh SC là tâm của mặt cầu ngoại tiếp hình chóp S ABC . và tính diện tích mặt cầu đó theo a. Câu 6: a) Giải phương trình lượng giác. b) Tính xác suất sao cho lớp nào cũng có học sinh được chọn và có ít nhất 2 học sinh lớp 12A. Câu 7: Tính theo a thể tích khối chóp S ABCD và khoảng cách giữa hai đường thẳng HK và SD. Câu 8: Tìm tọa độ đỉnh D. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 2 biến P.
Đề thi thử Quốc gia 2016 môn Toán trường Nam Duyên Hà - Thái Bình lần 3
Đề thi thử THPT Quốc gia 2016 môn Toán trường THPT Nam Duyên Hà – Thái Bình lần 3 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 3. Câu 2: Tìm m để hàm số đạt cực tiểu tại điểm x = −1. Câu 3: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và các trục tọa độ. Câu 4: a) Tìm môđun của số phức z. b) Tính xác suất sao cho 4 sản phẩm được chọn thuộc không quá hai trong ba loại sản phẩm trên. Câu 5: a) Giải phương trình lượng giác. b) Giải phương trình mũ. Câu 6: Chứng minh 2 đường thẳng vuông góc và tính khoảng cách từ một điểm tới mặt phẳng. Câu 7: Giải phương trình vô tỉ chứa 1 căn. Câu 8: Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng d. Tìm tọa độ điểm B thuộc d thỏa mãn điều kiện về khoảng cách. Câu 9: Tìm toạ độ các đỉnh của hình chữ nhật. Câu 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức 2 biến A.
Đề thi diễn tập THPT 2016 môn Toán chuyên Nguyễn Quang Diêu - Đồng Tháp
Đề thi diễn tập THPT Quốc gia 2016 môn Toán trường chuyên Nguyễn Quang Diêu – Đồng Tháp có đáp án và thang điểm chi tiết. Tóm tắt các ý chính có trong đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị hàm số trùng phương. Câu 2: Viết phương trình tiếp tuyến của (C) tại điểm có tung độ bằng 1. Câu 3: a) Tìm môđun của số phức w. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt cầu (S) có đường kính AB. b) Chứng minh (P) tiếp xúc với mặt cầu (S). Câu 6: a) Tính giá trị của biểu thức lượng giác P. b) Tìm số hạng trong khai triển nhị thức. Câu 7: Tính thể tích khối chóp S.ABCD và khoảng cách từ C đến mặt phẳng (SBD) theo a . Câu 8: Tìm tọa độ các đỉnh còn lại của hình chữ nhật ABCD biết rằng đỉnh B có hoành độ dương, đường trung tuyến kẻ từ B của tam giác ABD có hệ số góc nhỏ hơn 1. Câu 9: Tìm m để hệ phương trình tham số có hai nghiệm phân biệt. Câu 10: Tìm giá trị nhỏ nhất của biểu thức 3 biến P.