Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh

Nội dung Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh Bản PDF Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT An Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 19 tháng 08 năm 2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT An Giang : + Cho đa thức P(x) = xn + 4 với n thuộc N. a. Với n = 4 hãy phân tích đa thức P(x) thành tích các đa thức với các hệ số đều là số nguyên. b. Tìm tất cả các giá trị n nguyên dương sao cho đa thức P(x) phân tích được thành tích của hai đa thức khác hằng số với hệ số là các số nguyên. + Hai kênh dẫn nước (P) và (Q) vuông góc nhau (như hình vẽ) chiều rộng của hai kênh lần lượt là a và b. Một thanh gỗ AB có thiết diện không đáng kể nổi trên mặt nước và trôi từ kênh (P) sang kênh (Q). Tìm độ dài lớn nhất của thanh gỗ AB sao cho thanh gỗ trôi qua được từ kênh (P) sang kênh (Q). + Tính theo n số các điểm trên mặt phẳng tọa độ Oxy có tọa độ (x;y) với x; y đều là số nguyên thỏa mãn |x| + |y| =< n với n là số tự nhiên cho trước.
Đề học sinh giỏi Toán cấp THPT năm 2022 - 2023 sở GDĐT An Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán cấp THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 15 tháng 04 năm 2023. Trích dẫn Đề học sinh giỏi Toán cấp THPT năm 2022 – 2023 sở GD&ĐT An Giang : + Cho hình thang ABCD vuông tại A và B cho AD = 2a; AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S bất kỳ. Gọi C’; D’ lần lượt là hình chiếu vuông góc của A trên SC; SD. a) Chứng minh rằng A; B; C’; D’ cùng thuộc một mặt phẳng. b) Chứng minh rằng C’D’ luôn đi qua một điểm cố định khi S thay đổi trên Ax. + Cho tập hợp các số có ba chữ số và tính chất sau: (1) Không có số nào chứa chữ số 0. (2) Tổng các chữ số của mỗi số là 9. (3) Hai số bất kỳ có chữ số hàng đơn vị khác nhau. (4) Chữ số hàng chục của hai số bất kỳ khác nhau. (5) Chữ số hàng trăm của hai số bất kỳ khác nhau. a) Tìm số phần tử của S là tập hợp các số có ba chữ số thỏa mãn (1) và (2). b) Tìm giá trị lớn nhất số phần tử của T các số có ba chữ số thỏa mãn (1) đến (5). + Cho tam giác đều ABC cạnh bằng a. Dựng tam giác A1B1C1 có các đỉnh là trung điểm các cạnh của tam giác ABC, tam giác A2B2C2 có các đỉnh là trung điểm của các cạnh của tam giác A1B1C1 … tam giác An+1Bn+1Cn+1 là trung điểm các cạnh của tam giác AnBnCn … Đặt p1; p2 … pn … và S1; S2 … Sn … lần lượt là chu vi và diện tích tam giác A1B1C1; A2B2C2 … AnBnCn … a) Tính (pn) và (Sn) theo a, n. b) Ký hiệu Pn = p1 + p2 + … + pn và Qn = S1 + S2 + … + Sn. Tính lim Pn và lim Qn.
Đề học sinh giỏi MTCT Toán THPT năm 2022 - 2023 sở GDĐT Vĩnh Long
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp tỉnh giải toán bằng máy tính cầm tay môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Long; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn giải. Trích dẫn Đề học sinh giỏi MTCT Toán THPT năm 2022 – 2023 sở GD&ĐT Vĩnh Long : + Một người gửi triệu đồng vào ngân hàng với kì hạn tháng (quý), lãi suất một quý theo hình thức lãi kép. Sau đúng tháng, người đó lại gửi thêm triệu đồng với hình thức và lãi suất như trên. Hỏi sau năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? (làm tròn đến 1 chữ số thâp phân). + Cho tam giác ABC có AB 3 5 BC 5 3 CA 48. Gọi M là trung điểm của AC; N là điểm trên cạnh BC sao cho BC BN 3 và BM cắt AN tại I. Trên đường thẳng vuông góc với mặt phẳng ABC tại I, lấy điểm S sao cho SI 7. Tính gần đúng a) Độ dài các cạnh SA SB SC của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). b) Chiều cao BK của tứ diện SABC (làm tròn đến 9 chữ số thâp phân). c) Bán kính R của mặt cầu ngoại tiếp tứ diện SABC (làm tròn đến 9 chữ số thâp phân). + Cho 2023 đường tròn đồng tâm nội tiếp trong 2023 hình vuông (dạng như hình vẽ). Tính gần đúng diện tích phần tô đậm, biết hình vuông lớn nhất có cạnh bằng 1 cm (làm tròn đến 5 chữ số thâp phân).
Đề HSG Toán 12 năm 2022 - 2023 trường THCS THPT Thống Nhất - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng và chọn đội tuyển học sinh giỏi môn Toán 12 năm học 2022 – 2023 trường THCS & THPT Thống Nhất, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết mã đề 235. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 trường THCS & THPT Thống Nhất – Thanh Hóa : + Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng /tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu? + Xét các số nguyên dương a b sao cho phương trình 2 a xb x ln ln 5 0 có hai nghiệm phân biệt 1 2 x x và phương trình 2 5log log 0 xb xa có hai nghiệm phân biệt 3 4 x x thỏa mãn 12 34 xx. Tìm giá trị nhỏ nhất min S của S ab. + Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a SA SB a SC SD a 3. Gọi E F lần lượt là trung điểm các cạnh SA SB. Trên cạnh BC lấy M sao cho BM x. Tính diện tích thiết diện của hình chóp với mặt phẳng (MEF) theo x và a?