Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh

Nội dung Đề thi giao lưu HSG Toán năm 2018 2019 cụm Gia Bình Lương Tài Bắc Ninh Bản PDF Đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh mã đề 888 gồm 6 trang với 50 câu hỏi và bài toán hình thức trắc nghiệm khách quan, thời gian làm bài thi 90 phút, kỳ thi được diễn ra vào ngày 23 tháng 12 năm 2018 nhằm đánh giá chất lượng đội tuyển học sinh giỏi Toán của các trường, đồng thời tạo điều kiện để các em rèn luyện và phát triển năng lực môn Toán của bản thân, đề thi có đáp án mã đề 666 và 888. Trích dẫn đề thi giao lưu HSG Toán năm 2018 – 2019 cụm Gia Bình – Lương Tài – Bắc Ninh : + Một phân xưởng có hai máy đặc chủng M1, M2 sản xuất hai loại sản phẩm kí hiệu I, II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai sản phẩm trên. Máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ. Tổng số tiền lãi là lớn nhất có thể đạt được là? + Nhà xe khoán cho hai tài xế ta-xi Nam và Tiến mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng chỉ tiêu cho hai người một ngày tổng cộng chỉ chạy đủ hết 10 lít xăng và mỗi ngày lượng xăng của mỗi người chạy là không thay đổi? [ads] + Một người thợ muốn tạo một đồ vật hình trụ từ một khối gỗ hình hộp chữ nhật, có đáy là hình vuông và chiều cao bằng 1,25 m. Để tạo ra đồ vật đó người thợ vẽ hai đường tròn (C) và (C’) nội tiếp hai hình vuông của hai mặt đáy của khối gỗ hình hộp chữ nhật rồi dọc đi phần gỗ thừa theo các đường sinh của đồ vật hình trụ. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhật kích thước 0,3cm x 0,6cm (như hình vẽ) và mỗi mét khối gỗ thành phẩm có giá 20 triệu đồng. Hỏi người thợ cần số tiền gần nhất với số tiền của phương án nào dưới đây để tạo được 10 đồ vật như vậy. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Khánh Hòa
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2020.
Đề thi chọn HSG tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Thừa Thiên Huế
Thứ Ba ngày 19 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 hệ THPT năm học 2020 – 2021. Đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút (không kể thời gian cán bộ coi thi phát đề). Trích dẫn đề thi chọn HSG tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số 0, 1, 2, 3, 4, 5. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn là một số chẵn. + Cho phương trình: (2m + 3).16^x – (4m – 2).4^x + 3m – 8 = 0 (1) với m là tham số thực. a) Giải phương trình khi m = 3. b) Tìm các giá trị của tham số m để phương trình (1) có hai nghiệm trái dấu. + Cho hình chóp S.ABCD có cạnh SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Gọi H là hình chiếu của S lên mặt phẳng đáy ABCD. a) Chứng minh rằng SA vuông góc với SC. b) Tính diện tích đáy ABCD theo x của hình chóp S.ABCD. c) Xác định x để khối chóp S.ABCD có thể tích lớn nhất. Tính giá trị thể tích lớn nhất đó.
Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 - 2021 sở GDĐT Lào Cai
Sáng thứ Hai ngày 18 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Lào Cai tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh THPT môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Lào Cai gồm 05 bài toán dạng tự luận, thời gian thí sinh làm bài thi là 180 phút, thí sinh không được sử dụng tài liệu và máy tính cầm tay khi làm bài. Trích dẫn đề thi học sinh giỏi tỉnh Toán THPT năm 2020 – 2021 sở GD&ĐT Lào Cai : + Cho tập S = {1; 2; 3; … ; 2016}. a) Hỏi có bao nhiêu tập con gồm 3 phần tử khác nhau chọn từ tập S, sao cho 3 số được chọn là độ dài 3 cạnh của một tam giác mà cạnh lớn nhất độ dài là 1000. b) Chọn ngẫu nhiên 3 số khác nhau từ tập S. Tính xác suất sao cho 3 số được chọn là độ dài 3 cạnh của một tam giác mà cạnh lớn nhất độ dài là số chẵn. + Cho hình chóp tứ giác đều S.ABCD biết AB = a, góc giữa hai mặt phẳng (SBC0 và (ABCD) bằng 60°. a) Tính khoảng cách giữa hai đường thẳng chéo nhau AB và SC. b) Lấy các điểm M, P lần lượt thuộc cạnh AD, SC sao cho AM/AD = 1/2, SP/SC = 3/5. Gọi N là giao điểm của SD với mặt phẳng (BMP). Tính thể tích của khối đa diện SABMNP. + Tìm tất cả các giá trị của tham số m để phương trình log2 (2x + m) – 2log2 x = x2 – 4x – 2m – 1 có hai nghiệm thực phân biệt.
Đề thi học sinh giỏi Toán 12 năm 2020 - 2021 sở GDĐT tỉnh Đồng Nai
Thứ Sáu ngày 15 tháng 01 năm 2021, sở Giáo dục và Đào tạo tỉnh Đồng Nai tổ chức kỳ thi chọn học sinh và học viên giỏi môn Toán lớp 12 THPT và GDTX năm học 2020 – 2021. Đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian cán bộ coi thi phát đề), thí sinh được phép sử dụng máy tính cầm tay nhưng không được phép sử dụng tài liệu khi làm bài. Trích dẫn đề thi học sinh giỏi Toán 12 năm 2020 – 2021 sở GD&ĐT tỉnh Đồng Nai : + Một chiếc hộp đựng 20 viên bi giống nhau, mỗi viên bi được ghi một trong các số tự nhiên từ 1 đến 20 (không có hai viên bi ghi cùng một số). Bốc ngẫu nhiên 4 viên bi từ chiếc hộp nói trên, tính xác suất để tổng các số ghi trên các viên bi chia hết cho 3. + Bạn An làm hai cái bánh là hai khối trụ bằng nhau có tổng thể tích bằng 144pi cm3 và dùng giấy carton làm một cái hộp hình hộp chữ nhật (có đủ 6 mặt) để đựng vừa khít hai cái bánh như hình vẽ. Tính diện tích nhỏ nhất của giấy carton dùng trong việc nêu trên. + Cho hình chóp S.ABC có AB = AC = 10a, BC = 12a (với 0 < a thuộc R), hình chiếu vuông góc của đỉnh S lên mặt phẳng đáy trùng với tâm O của đường tròn ngoại tiếp tam giác ABC, góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. 1) Tính theo a diện tích của mặt cầu ngoại tiếp hình chóp S.ABC. 2) Gọi hai điểm D, E lần lượt thuộc hai cạnh AB, BC thỏa mãn AD.BE = 60a2. Tính theo a thể tích của khối chóp S.ADE.