Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm học 2017 2018 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm học 2017 2018 trường THPT chuyên Hà Nội Amsterdam Bản PDF Đề thi học kỳ 1 Toán lớp 10 chuyên năm học 2017 – 2018 trường THPT chuyên Hà Nội – Amsterdam gồm 6 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 10 : + Cho tam giác ABC có góc A = 60 độ, AC = b, AB = c. Gọi M, N là các điểm thỏa mãn các biểu thức vectơ MA – 2NC = 6NA – 3MB, MA + 3MB = -(NC + 3NA). a. Xác định vị trí của các điểm M, N b. Tìm tập hợp điểm P thỏa mãn |PA + PB + PC| = |PM + PN| c. Tìm điều kiện của b, c để BN ⊥ CM [ads] + Có bao nhiêu cách sắp xếp 20 viên bi giống nhau vào 3 hộp sao cho hộp nào cũng có bi? Nếu 20 viên bi đó đôi một khác nhau thì có bao nhiêu cách sắp xếp? + Cho 2018 số nguyên dương không lớn hơn 2018 có tổng bằng 4036. Hỏi từ các số này có thể chọn được ít nhất một bộ các số có tổng bằng 2018 hay không?

Nguồn: sytu.vn

Đọc Sách

Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Văn Tăng - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Nguyễn Văn Tăng, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Văn Tăng – TP HCM : + Tìm tập xác định của hàm số. + Xác định phương trình của parabol (P): y = ax2 + 3x + c (a khác 0) biết (P) đi qua hai điểm A(2;1) và B(-3;4)? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(2;3), B(-2;1), C(-2;11). a) Chứng minh rằng tam giác ABC là tam giác vuông tại A. Tính diện tích tam giác ABC. b) Gọi G là trọng tâm tam giác ABC. Tính độ dài đoạn thẳng AG. c) Tìm tọa độ điểm D thỏa AD = 2BC. d) Tìm tọa độ tâm và bán kính đường tròn ngoại tiếp tam giác ABC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Thủ Thiêm - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Thủ Thiêm, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Thủ Thiêm – TP HCM : + Trong mặt phẳng (Oxy), cho ba điểm A(2;-1); B(4;4); C(-2;-4). a) Chứng minh A, B, C tạo thành tam giác. Tính chu vi tam giác ABC. b) Tìm D sao cho tứ giác AODC là hình bình hành. Tìm tọa độ tâm I của hình bình hành. c) Tìm tọa độ trực tâm H của tam giác ABC. + Khảo sát sự biến thiên và vẽ đồ thị hàm số y = 2x^2 – 4x – 3. + Tìm hàm số y = ax^2 + bx + 8 biết đồ thị của hàm số là một parabol có đỉnh S(-3;17).
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT An Dương Vương - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT An Dương Vương, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT An Dương Vương – TP HCM : + Cho tam giác ABC có AB = 5, AC = 6, góc A = 60 độ. Tính BC, diện tích S, bán kính đường tròn ngoại tiếp R và bán kính đường tròn nội tiếp r của tam giác ABC. + Tính số đo góc A trong tam giác ABC biết rằng 5ma^2 = mb^2 + mc^2 (với ma, mb, mc lần lượt là độ dài đường trung tuyến xuất phát từ các đỉnh A, B, C). + Với m là tham số của phương trình mx – 2m + 2x – 1 = 0. Tìm m để phương trình đã cho vô nghiệm.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Tạ Quang Bửu - TP HCM
Nhằm giúp các em học sinh lớp 10 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán 10, sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán 10 năm học 2019 – 2020 trường THPT Tạ Quang Bửu, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Tạ Quang Bửu – TP HCM : + Tìm các giá trị của tham số m để phương trình x^2 – (m – 1)x + m – 1 = 0 có nghiệm kép. + Giải và biện luận phương trình (m^2 – 4)x = m + 2 theo tham số m. + Trong mặt phẳng tọa độ Oxy, cho a = (2;-5), b = (1;3), c = (3;4). Phân tích c theo hai véctơ a và b.