Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp

Hàm số lượng giác và phương trình lượng giác là một chủ đề kiến thức quan trọng không chỉ trong chương trình Đại số và Giải tích 11 mà còn chiếm một lượng điểm nhất định trong đề thi Trung học Phổ thông Quốc gia môn Toán. Để giúp các em rèn luyện kỹ năng giải bài tập, thầy Nguyễn Bảo Vương biên soạn và giới thiệu tài liệu các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp. Tài liệu gồm 130 trang với phần lớn các bài toán được trích dẫn trong các đề thi thử môn Toán của các trường THPT và cơ sở GD&ĐT trên toàn quốc, các câu hỏi và bài tập đều có đáp án, được phân tích và giải chi tiết. Khái quát nội dung tài liệu các dạng toán hàm số lượng giác và phương trình lượng giác thường gặp: VẤN ĐỀ 1 . HÀM SỐ LƯỢNG GIÁC. Dạng toán 1. Tập xác định của hàm số lượng giác. Dạng toán 2. Tính tuần hoàn của hàm số lượng giác. Dạng toán 3. Tính chẵn, lẻ của hàm số lượng giác. Dạng toán 4. Tính đơn điệu của hàm số lượng giác. Dạng toán 5. Tập giá trị, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. + Dạng toán 5.1 Biến đổi thông thường, sử dụng bất đẳng thức cơ bản của sin, cos. + Dạng toán 5.2 Đặt ẩn phụ. + Dạng toán 5.3 Áp dụng bất đẳng thức đại số. Dạng toán 6. Đồ thị của hàm số lượng giác. [ads] VẤN ĐỀ 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. Dạng toán 1. Phương trình sinx = a. + Dạng toán 1.1 Không có điều kiện nghiệm. + Dạng toán 1.2 Có điều kiện nghiệm. Dạng toán 2. Phương trình cosx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 3. Phương trình tanx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 4. Phương trình cotx = a. + Dạng toán 2.1 Không có điều kiện nghiệm. + Dạng toán 2.2 Có điều kiện nghiệm. Dạng toán 5. Một số bài toán tổng hợp [ads] VẤN ĐỀ 3 . MỘT SỐ PHƯƠNG TRÌNH THƯỜNG GẶP. Dạng toán 1. Giải và biện luận Phương trình bậc hai đối với một hàm số lượng giác. + Dạng toán 1.1 Không cần biết đổi. + Dạng toán 1.2 Biến đổi quy về phương trình bậc hai. + Dạng toán 1.3 Có điều kiện của nghiệm. Dạng toán 2. Giải và biện luận Phương trình bậc nhất đối với sin và cos. + Dạng toán 2.1 Không cần biến đổi. + Dạng toán 2.2 Cần biến đổi. + Dạng toán 2.3 Có điều kiện của nghiệm. + Dạng toán 2.3.1 Điều kiện nghiệm. + Dạng toán 2.3.2 Định m để phương trình có nghiệm. + Dạng toán 2.3.3 Sử dụng điều kiện có nghiệm để tìm giá trị lớn nhất – giá trị nhỏ nhất. Dạng toán 3. Giải và biện luận phương trình đẳng cấp. + Dạng toán 3.1 Không có điều kiện của nghiệm. + Dạng toán 3.3 Có điều kiện của nghiệm. + Dạng toán 3.3 Định m để phương trình có nghiệm. Dạng toán 4. Giải và biện luận Phương trình đối xứng. + Dạng toán 4.1 Không có điều kiện của nghiệm. + Dạng toán 4.2 Có điều kiện của nghiệm. Dạng toán 5. Biến đổi đưa về phương trình tích. + Dạng toán 5.1 Không có điều kiện của nghiệm. + Dạng toán 5.2 Có điều kiện của nghiệm. Dạng toán 6. Giải và biện luận phương trình lượng giác chứa ẩn ở mẫu. Dạng toán 7. Giải và biện luận Một số bài toán về phương trình lượng giác khác. Dạng toán 8. Giải và biện luận Phương trình lượng giác chứa tham số.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề Lượng giác - Phạm Thu Hiền
Lượng giác đóng vai trò quan trọng và xuyên suốt trong chương trình toán phổ thông và được ứng dụng khá nhiều trong thực tế, đặc biệt là trong lĩnh vực nghiên cứu thiên văn. Đây sẽ là một trong những vấn đề quan trọng trong kì thi THPT quốc gia 2018, khi chương trình 10 và 11 được đưa vào trong đề thi. Chủ đề lượng giác được chia làm ba phần: + Phần 1: Cơ sở lí thuyết như cung liên kết, công thức lượng giác, hằng đẳng thức lượng giác, hàm số lượng giác. [ads] + Phần 2: Các dạng phương trình lượng giác thường gặp. + Phần 3: Một số bài toán lượng giác điển hình có liên quan. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh THPT. Sẽ không tránh khỏi thiếu sót khi biên tập, rất mong nhận được sự đóng góp từ quý bạn đọc để chuyên đề ngày một hoàn thiện hơn.
Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio - Nguyễn Tiến Chinh
Tài liệu Thủ thuật giải trắc nghiệm lượng giác bằng máy tính Casio của thầy giáo Nguyễn Tiến Chinh gồm 14 trang. Tài liệu hướng dẫn mẹo bấm máy tính nhanh của một số bài toán lượng giác thường gặp.
5 dạng toán hàm số lượng giác điển hình - Trần Đình Cư
Tài liệu gồm 19 trang trình bày 5 dạng toán thường gặp về hàm số lượng giác: + Dạng 1. Tìm tập xác định của hàm số. + Dạng 2. Xét tính chẵn lẻ của hàm số. + Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. + Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. + Dạng 5. Vẽ đồ thị hàm số lượng giác. Mỗi dạng đều có phương pháp giải, ví dụ mẫu có lời giải chi tiết kèm theo phần bài tập.
Chuyên đề phương trình lượng giác - Trần Duy Thúc
Tài liệu Chuyên đề phương trình lượng giác của thầy Trần Duy Thúc gồm 39 trang, tài liệu tóm tắt những công thức lượng giác thường gặp, các dạng phương lượng giác cơ bản và nâng cao được đan xen với 50 ví dụ về các phương trình lượng giác điển hình. Phần cuối tài liệu là tuyển tập 160 bài toán phương trình lượng giác được trích từ các đề thi Quốc gia, đề dự bị và đề thi thử.