Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2018 2019 trường THPT Vinh Lộc TT Huế

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2018 2019 trường THPT Vinh Lộc TT Huế Bản PDF Nhằm kiểm tra đánh giá chất lượng học tập môn Toán của học sinh khối 11 trong giai đoạn học kỳ 2 năm học 2018 – 2019, vừa qua, trường THPT Vinh Lộc, tỉnh Thừa Thiên Huế tổ chức kỳ thi học kỳ 2 Toán lớp 11 năm học 2018 – 2019. Đề thi học kỳ 2 Toán lớp 11 năm 2018 – 2019 trường THPT Vinh Lộc – TT Huế gồm 4 mã đề A – B – C – D, đề được biên soạn theo dạng kết hợp giữa trắc nghiệm khách quan và tự luận theo tỉ lệ điểm 80:20, phần trắc nghiệm gồm 40 câu, phần tự luận gồm 2 câu, học sinh làm bài thi trong khoảng thời gian 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề thi học kỳ 2 Toán lớp 11 năm 2018 – 2019 trường THPT Vinh Lộc – TT Huế : + Một nhóm bạn trao đổi về kết quả khi tính lim (1/2 + 1/4 + 1/8 + … + 1/2^n)/a^n với n thuộc N* đã đưa ra các nhận xét như sau: (1) Giới hạn lớn hơn 0 nếu a > 1. (2) Giới hạn bằng 1 nếu a = 1. (3) Giới hạn bằng cộng vô cùng nếu 0 < a < 1. Hỏi có tất cả bao nhiêu nhận xét đúng? A. Không có nhận xét nào đúng. B. Chỉ có một nhận xét đúng. C. Có hai nhận xét đúng. D. Cả ba nhận xét đều đúng. + Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 6cm, BC = BB’ = 2cm. Điểm E là trung điểm cạnh BC. Một tứ diện đều MNPQ có hai đỉnh M và N nằm trên đường thẳng EC’, hai đỉnh P và Q nằm trên đường thẳng đi qua điểm B’ và cắt đường thẳng AD tại điểm F. Khoảng cách DF bằng bao nhiêu? + Gọi (C) là đồ thị của hàm số y = x^2/(2 – x). M là một điểm trên (C) không trùng với gốc tọa độ và có hoành độ là số nguyên sao cho khoảng cách từ M đến trục hoành gấp đôi khoảng cách từ M đến trục tung. Phương trình nào sau đây là một phương trình tiếp tuyến của (C) tại M?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường chuyên Lê Hồng Phong - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Cần Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Cần Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Cần Thạnh – TP HCM : + Tính đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến của (C): 2 1 3 x y x biết tiếp tuyến song song với đường thẳng 1 : 1 7 d. + Viết phương trình tiếp tuyến với đồ thị hàm số 3 2 y x 3x tại điểm có hoành độ bằng -1.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Bùi Thị Xuân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Bùi Thị Xuân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Bùi Thị Xuân – TP HCM : + Một vật chuyển động có phương trình trong đó t (tính bằng giây) là thời gian vật chuyển động kể từ lúc bắt đầu chuyển động và S (tính bằng mét) là quãng đường vật đi được trong khoảng thời gian t. Tính vận tốc và gia tốc của vật tại thời điểm t s. + Cho hàm số có đồ thị C. Viết phương trình tiếp tuyến của đồ thị C, biết tiếp tuyến song song đường thẳng d y x 9 6. + Chứng minh phương trình 2 4 m m x x 2 6 2 0 luôn có nghiệm với mọi giá trị thực của tham số m.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Bình Tân - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Bình Tân, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Bình Tân – TP HCM : + Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O cạnh bằng a, SA a 3 và SA ABCD. a. Chứng minh BC SAB. b. Chứng minh SCD SAD. c. Tính góc giữa đường thẳng SO và mặt phẳng (ABCD). d. Tính khoảng cách từ điểm A đến mặt phẳng (SBD). + Cho hàm số 3 2 y x x x 3 7 2 có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C), biết tiếp tuyến song song với đường thẳng 4 2020 y x. + Tính đạo hàm của các hàm số sau.