Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Tiền Giang

Nội dung Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Tiền Giang Đề tuyển sinh THPT môn Toán năm 2020 2021 sở GD ĐT Tiền Giang Vào ngày...tháng 07 năm 2020, Sở Giáo dục và Đào tạo tỉnh Tiền Giang đã tổ chức kỳ thi tuyển sinh lớp 10 Trung học Phổ thông môn Toán cho năm học 2020 - 2021. Đề thi bao gồm 5 bài toán dạng tự luận, được in trên 01 trang giấy. Thời gian làm bài thi là 120 phút, đề thi cung cấp đáp án và lời giải chi tiết cho học sinh. Dưới đây là một số câu hỏi trích dẫn từ đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Tiền Giang: - Một người đi xe máy từ điểm A đến điểm B mất 1 giờ 30 phút, sau đó đi từ điểm B đến điểm C mất 2 giờ. Hỏi vận tốc trung bình của người này trên từng quãng đường AB và BC nếu tổng quãng đường từ A đến C là 150 km và vận tốc trên đoạn AB nhỏ hơn vận tốc trên đoạn BC là 5 km/h. - Cho tam giác ABC vuông tại A, biết AB = 6 cm và BC = 10 cm. Tính giá trị của biểu thức P = 5sinB + 3. - Cho hai đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A, với R > r. Các tiếp tuyến chung trong và chung ngoài tạo ra một số điểm trên đường tròn. Hãy chứng minh mối quan hệ giữa các điểm này và tính diện tích của tứ giác được tạo ra bởi chúng. Đề tuyển sinh THPT môn Toán năm 2020 - 2021 của sở GD&ĐT Tiền Giang không chỉ đánh giá kiến thức Toán mà còn khuyến khích học sinh tư duy logic, sáng tạo trong việc giải quyết các bài toán phức tạp. Hãy cùng nhau chuẩn bị tinh thần và kiến thức để đối mặt với những thách thức này!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Bình Lục - Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Lục, tỉnh Hà Nam. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Bình Lục – Hà Nam : + Cho Parabol (P): y = x2 và đường thẳng (d): y = (2m + 1)x – 2m với m là tham số. a) Trong các điểm M, N điểm nào thuộc (P)? b) Tìm m để (P) cắt (d) tại hai điểm phân biệt A(x1;y1); B(x2;y2) sao cho. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O; R), (AB < AC). Ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh tứ giác BFEC nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác BFEC. b) Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KF.KE = KB.KC. c) Đường thẳng AK cắt đường tròn (O) tại M (M khác A). Chứng minh MAF = MEF. d) Chứng minh đường thẳng MH luôn đi qua một điểm cố định khi A thay đổi. + Cho a, b, c là các số dương thỏa. Chứng minh abc = < 1/8.
Đề thi thử Toán vào lớp 10 năm 2022 - 2023 trường THCS Vĩnh Quang - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 trường THCS Vĩnh Quang, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 trường THCS Vĩnh Quang – Thanh Hóa : + Cho hàm số y = mx + n (m khác 0). Tìm m và n biết đồ thị hàm số song song với đường thẳng y = -x + 2021 và đi qua điểm A(1;2022). + Cho phương trình: x2 + 5x + m – 2 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1 và x2 thoả mãn. + Cho đường tròn (O; R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C nằm ngoài đường tròn (O; R) sao cho đoạn thẳng AC cắt đường tròn (O; R) tại điểm K khác A. Hai dây MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. 1. Chứng minh tứ giác AHEK nội tiếp. 2.Chứng minh tam giác NFK cân và EM.NC = EN.CM. 3.Giả sử KE = KC. Chứng minh OK // MN.
Đề thi thử Toán vào 10 lần 2 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho phương trình: x2 – 2x + m – 1 = 0 (1) (với m là tham số). a) Giải phương trình (1) khi m = -7 b) Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn hệ thức 2×1 + 2×2 + x12x22 = 8. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Để tham gia kỷ niệm ngày sinh của Bác 19/05, trường THCS A dự định lấy 120 học sinh gồm nam và nữ tham gia diễu hành. Nhưng sau đó ban tổ chức đã cắt giảm 20% số học sinh nam và 10% số học sinh nữ, do vậy tổng số học sinh tham gia diễu hành ít hơn dự kiến ban đầu là 17 em. Tính số học sinh nam và nữ dự định lấy để tham gia diễu hành. + Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên tia đối của tia CA lấy điểm E. Qua điểm C vẽ đường thẳng vuông góc với BE tại F. a) Chứng minh tứ giác BOCF là tứ giác nội tiếp. b) Gọi H là giao điểm của OF và BC. Chứng minh CH.FC = BH.FE. c) Đường tròn ngoại tiếp tam giác CEF cắt đường tròn (O) tại G. Chứng minh D, H, G thẳng hàng.
Đề thi thử Toán vào lớp 10 lần 2 năm 2022 - 2023 phòng GDĐT Quỳ Hợp - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán ôn tập thi tuyển sinh vào lớp 10 THPT lần 2 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quỳ Hợp, tỉnh Nghệ An. Trích dẫn đề thi thử Toán vào lớp 10 lần 2 năm 2022 – 2023 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Cho phương trình bậc hai ẩn x: x2 + 2mx + m2 – 1 = 0 (1) (với m là tham số). Tìm m để phương trình (1) có hai nghiệm x1 và x2 thỏa mãn. + Hưởng ứng Ngày sách và văn hóa đọc Việt Nam 21/4. Sáng ngày 20/4, Trung tâm văn hóa thể thao và truyền thông huyện phối hợp với Thư viện tỉnh và Trường THCS A tổ chức ngày hội đọc sách năm 2022 với chủ đề “Sách với cuộc sống”. Tại buổi lễ Thư viện tỉnh đã tặng trường THCS A 50 cuốn sách về kỹ năng sống và truyện về Bác Hồ kính yêu có tổng trị giá 5 triệu đồng. Biết mỗi cuốn sách kỹ năng sống có giá 120 nghìn đồng và mỗi cuốn truyện về Bác Hồ kính yêu có giá 70 nghìn đồng. Hỏi Thư viện tỉnh đã tặng cho trường THCS A bao nhiêu cuốn sách về kỹ năng sống và bao nhiêu cuốn truyện về Bác Hồ kính yêu? + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính R. Các đường cao BD, CE của tam giác ABC cắt nhau tại H. Đường thẳng chứa tia phân giác của góc BHE cắt AB, AC lần lượt tại F, G. a. Chứng minh các tứ giác BCDE; AEHD nội tiếp đường tròn. b. Chứng minh: BH.BD + CH.CE = BC2. c. Đường tròn ngoại tiếp tam giác AFG cắt đường phân giác của góc BAC tại Q (Q khác A). Khi B, C cố định và A thay đổi trên cung lớn BC của đường tròn (O). Chứng minh rằng đường thẳng HQ luôn đi qua một điểm cố định.