Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác

Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giácI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬPDạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnhDạng 2: Chứng minh các bất đẳng thức về độ dài Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Chuyên đề này bao gồm 08 trang tài liệu, cung cấp kiến thức về lý thuyết trọng tâm, các dạng toán và bài tập liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 7 hiểu rõ hơn về chương trình Toán lớp 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác và các đường đồng quy trong tam giác. Mục tiêu của chuyên đề là: Kiến thức: Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kỹ năng: Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÝ THUYẾT TRỌNG TÂM Trong phần này, chúng ta sẽ tìm hiểu về trọng tâm của tam giác và vai trò của nó trong quan hệ giữa ba cạnh của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnh Để xác định tam giác có tồn tại hay không, chúng ta cần áp dụng bất đẳng thức tam giác và xét các trường hợp khác nhau. Dạng 2: Chứng minh các bất đẳng thức về độ dài Trong dạng này, chúng ta sẽ sử dụng bất đẳng thức tam giác và thực hiện các biến đổi phù hợp để chứng minh các bất đẳng thức liên quan đến độ dài các cạnh của tam giác. Chúc các bạn học sinh lớp 7 học tập hiệu quả và thành công trong việc giải các bài toán liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác!

Nguồn: sytu.vn

Đọc Sách

Chuyên đề các trường hợp bằng nhau của tam giác vuông
Tài liệu gồm 10 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề các trường hợp bằng nhau của tam giác vuông, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được các trường hợp bằng nhau của tam giác vuông: 4 trường hợp. + Vận dụng định lí Py-ta-go để chứng minh trường hợp cạnh huyền – cạnh góc vuông. Kĩ năng: + Vận dụng các trường hợp bằng nhau của tam giác vuông để phát hiện và chứng minh hai tam giác vuông bằng nhau. + Chứng minh được hai đoạn thẳng bằng nhau, hai góc bằng nhau. I. LÍ THUYẾT TRỌNG TÂM + Trường hợp 1. Cạnh góc vuông – cạnh góc vuông: Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. + Trường hợp 2. Cạnh góc vuông – góc nhọn kề: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. + Trường hợp 3. Cạnh huyền – góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. + Trường hợp 4. Cạnh huyền – cạnh góc vuông: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1: Chứng minh hai tam giác vuông bằng nhau. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau.
Chuyên đề định lí Py-ta-go
Tài liệu gồm 08 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề định lí Py-ta-go, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được nội dung định lí Py-ta-go và định lí Py-ta-go đảo. Kĩ năng: + Vận dụng định lí Py-ta-go để tính độ dài cạnh thứ ba khi biết độ dài hai cạnh của tam giác vuông. + Vận dụng định lí Py-ta-go đảo để chứng minh góc vuông hoặc tam giác vuông. + Áp dụng định lí Py-ta-go vào các bài toán trong thực tiễn. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Tính độ dài một cạnh của tam giác vuông. Dạng 2: Sử dụng định lý Py-ta-go đảo để chứng minh tam giác vuông.
Chuyên đề tam giác cân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tam giác cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được định nghĩa về tam giác cân, tam giác vuông cân, tam giác đều. + Nắm được các tính chất và dấu hiệu nhận biết của tam giác cân, tam giác đều. Kĩ năng: + Biết vẽ một tam giác cân, tam giác vuông cân và tam giác đều. + Nhận biết và chứng minh được một tam giác là tam giác cân, tam giác vuông cân và tam giác đều. + Vận dụng các tính chất của tam giác cân, tam giác vuông cân và tam giác đều để tính số đo góc, chứng minh các góc hay các cạnh bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Nhận biết tam giác cân, tam giác đều. Dạng 2: Tính số đo góc, chứng minh các góc bằng nhau. Dạng 3: Chứng minh đoạn thẳng bằng nhau. Dạng 4: Các bài toán tổng hợp.
Chuyên đề trường hợp bằng nhau thứ ba của tam giác góc - cạnh - góc (g.c.g)
Tài liệu gồm 15 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề trường hợp bằng nhau thứ ba của tam giác: góc – cạnh – góc (g.c.g), có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán 7 phần Hình học chương 2: Tam giác. Mục tiêu : Kiến thức: + Nắm được cách vẽ tam giác biết một cạnh và hai góc kề. + Phát biểu và hiểu được trường hợp bằng nhau góc – cạnh – góc. + Phát biểu và nắm được các hệ quả của trường hợp góc – cạnh – góc trong tam giác vuông. Kĩ năng: + Vẽ thành thạo một tam giác khi biết một cạnh và hai góc kề. + Phát hiện và chứng minh được hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. + Biết vận dụng một cách linh hoạt giữa các trường hợp bằng nhau của hai tam giác để chứng minh hai tam giác bằng nhau, hai đoạn thẳng (góc) bằng nhau. + Biết trình bày và lập luận chặt chẽ trong bài toán chứng minh hai tam giác bằng nhau, hai góc (đoạn thẳng) bằng nhau. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1: Vẽ tam giác biết một cạnh và hai góc kề. Dạng 2: Chứng minh hai tam giác bằng nhau theo trường hợp góc – cạnh – góc. Dạng 3: Chứng minh hai đoạn thẳng bằng nhau. Dạng 4: Sử dụng nhiều trường hợp bằng nhau của tam giác.