Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa kì 1 Toán 12 năm 2019 - 2020 trường THPT Lý Thường Kiệt - Hà Nội

giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi giữa kì 1 Toán 12 năm học 2019 – 2020 trường THPT Lý Thường Kiệt – Hà Nội, đề thi có mã đề 145, gồm 08 trang, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài kiểm tra là 90 phút, kì thi nhằm giúp giáo viên bộ môn và nhà trường nắm rõ chất lượng học tập môn Toán của học sinh khối 12. Trích dẫn đề thi giữa kì 1 Toán 12 năm 2019 – 2020 trường THPT Lý Thường Kiệt – Hà Nội : + Đa diện đều loại {p;q} được hiểu là : A. Mỗi mặt là đa giác đều p cạnh, mỗi đỉnh được là đỉnh chung đúng q mặt. B. Luôn có tâm đối xứng, Trục đối xứng và mặt đối xứng. C. Có duy nhất một công thức để liên hệ giữa số đỉnh, số mặt, số cạnh của mỗi khối đa diện. D. Mỗi mặt là đa giác đều q cạnh, mỗi đỉnh được là đỉnh chung đúng p mặt. [ads] + Cho hàm số y = a^x (0 < a khác 1). Khẳng định nào sau đây là khẳng định sai? A. Hàm số y = a^x đồng biến trên tập xác định của nó khi a > 1. B. Đồ thị hàm số y = a^x có đường tiệm cận ngang là trục hoành C. Hàm số y = a^x có tập xác định là R và có tập giá trị là (0;+vc). D. Đồ thị hàm số y = a^x có đường tiệm cận đứng là trục tung. + Nhân ngày quốc tế phụ nữ 8 – 3 năm 2020, Anh Hải Đăng quyết định mua tặng Bạn Gái một mốn quà và đặt nó vào trong một chiếc hộp có thể tích là 32 (đvtt) có đáy hình vuông và không có nắp. Để món quà trở nên thật đặc biệt và xứng đáng với giá trị của nó Anh Hải Đăng quyết định mạ vàng cho chiếc hộp, biết rằng độ dày lớp mạ vàng tại mọi điểm trên hộp là như nhau. Gọi chiều cao và độ dài cạnh đáy của chiếc hộp lần lượt là h và x. Để lượng vàng trên hộp là nhỏ nhất thì giá trị của x^2 + h^2 phải là?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa học kỳ I năm học 2017 - 2018 môn Toán 12 trường THPT chuyên Hà Nội - Amsterdam
Đề kiểm tra giữa học kỳ I năm học 2017 – 2018 môn Toán 12 trường THPT chuyên Hà Nội – Amsterdam gồm 2 trang với 15 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút. Đề kiểm tra có đáp án.
Đề kiểm tra giữa kỳ I năm học 2017 2018 môn Toán 12 trường THPT Thăng Long - Hà Nội
Đề kiểm tra giữa kỳ I năm học 2017 – 2018 môn Toán 12 trường THPT Thăng Long – Hà Nội gồm 2 trang với 25 câu hỏi trắc nghiệm, thời gian làm bài 45 phút.
Kỳ thi kiểm tra giữa kỳ I bài thi Toán 12 trường THPT Bùi Hữu Nghĩa - Cần Thơ
Kỳ thi kiểm tra giữa kỳ I bài thi Toán 12 trường THPT Bùi Hữu Nghĩa – Cần Thơ gồm 40 câu hỏi trắc nghiệm, thời gian làm bài 60 phút. Đề thi có nội dung gồm các chương: Hàm số, hình học không gian, mũ và logarit. Trích dẫn đề thi : + Hãy chọn mệnh đề sai. A. Tứ diện là đa diện lồi B. Hình hộp là đa diện lồi C. Hình tạo bởi hai tứ diện ghép với nhau là đa giác lồi D. Hình lập phương là đa diện lồi [ads] + Chọn khẳng định đúng trong các khẳng định sau? A. Cơ số của logarit là một số thực tùy ý B. Cơ số của logarit là một số nguyên dương C. Cơ số của logarit là một số nguyên D. Cơ số của logarit là một số dương khác 1 + Hãy chọn mệnh đề đúng? A. Hai hình lập phương có diện tích toàn phần bằng nhau thì thể tích bằng nhau B. Hai lăng trụ tứ giác đều có diện tích đáy bằng nhau thì thể tích bằng nhau C. Hai hình chóp ta giác đều có diện tích đáy bằng nhau thì thể tích bằng nhau D. Hai hình hộp có chu vi đáy bằng nhau và chiều cao bằng nhau thì thể tích bằng nhau
Đề kiểm tra giữa HKI môn Toán 12 năm học 2017 - 2018 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề kiểm tra giữa HKI môn Toán 12 năm học 2017 – 2018 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề 25 câu hỏi trắc nghiệm, thời gian làm bài 45 phút. Đề kiểm tra có đáp án và lời giải chi tiết các câu phân loại . Trích dẫn đề kiểm tra : + Cho hàm số y = −x^3 + 3x^2 + 1. Khẳng định nào sau đây là đúng? A. Hàm số đồng đồng biến khoảng (−∞; 0) và (2; +∞) B. Hàm số nghịch biến trên khoảng (−2; 2) C. Hàm số nghịch biến trên khoảng (−∞; −2) và (0; +∞) D. Hàm số đồng biến trên khoảng (0; 2) [ads] + Tìm diện tích lớn nhất của hình chữ nhật nội tiếp trong nửa đường tròn có bán kính 10 cm, biết một cạnh của hình chữ nhật nằm dọc theo đường kính của nửa đường tròn. A. 160 cm^2 B. 80 cm^2 C. 200 cm^2 D. 100 cm^2 + Cho hình chóp S.ABCD có thể tích bằng 6a^3 và đáy ABCD là hình bình hành. Tam giác SAC là tam giác đều cạnh a. Tính khoảng cách d từ điểm B đến mặt phẳng (SAC). A. d = 12a√3 B. d = 24a√3 C. d = 4a D. d = 4a√3