Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lần 2 Toán 10 năm 2023 - 2024 trường THPT Tĩnh Gia 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT Tĩnh Gia 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề kiểm tra lần 2 Toán 10 năm 2023 – 2024 trường THPT Tĩnh Gia 1 – Thanh Hóa : + Một nhóm học tập có 10 học sinh trong đó có 6 nam và 4 nữ. a) Số cách chọn một học đi dự đại hội là 10. b) Số cách chọn hai học sinh đi dự đại hội là 45. c) Số cách chọn 3 học sinh trong đó có cả nam và nữ là 95. d) Số cách xếp 10 học sinh thành một hàng sao cho các học sinh nữ luôn xếp gần nhau 120960. + Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo được khoảng cách AB = 40m, CAB CBA 45 70. Khoảng cách AC bằng bao nhiêu? (kết quả làm tròn đến hàng phần mười). + Một gia đình định trồng đậu và cà trên diện tích 8ha. Nếu trồng đậu thì cần 20 công và thu về 3 triệu đồng trên diện tích mỗi ha, nếu trồng cà thì cần 30 công và thu về 4 triệu đồng trên diện tích mỗi ha. Gọi x y lần lượt là diện tích trồng đậu và cà để thu được nhiều tiền nhất. Biết tổng số công không vượt quá 180. Khi đó 2 2 x y bằng bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Viết Xuân Vĩnh Phúc
Nội dung Đề KSCL lần 3 lớp 10 môn Toán năm 2022 2023 trường THPT Nguyễn Viết Xuân Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 3 môn Toán lớp 10 năm học 2022 – 2023 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc; đề thi mã đề 101, hình thức trắc nghiệm với 50 câu, thời gian làm bài: 90 phút, không kể thời gian phát đề. Trích dẫn đề KSCL lần 3 Toán lớp 10 năm 2022 – 2023 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trên nóc một tòa nhà có một cột ăng-ten cao 5 m. Từ vị trí quan sát
Đề KSCL lớp 10 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa
Nội dung Đề KSCL lớp 10 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán lớp 10 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 10 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Văn, 11 học sinh giỏi Anh, trong đó có 6 học sinh giỏi cả Toán và Văn, 5 học sinh giỏi cả Anh và Văn, 4 học sinh giỏi cả Toán và Anh, 3 học sinh giỏi cả ba môn Toán, Văn và Anh. Tính số học sinh giỏi đúng một trong hai môn Toán hoặc Văn. + Người ta dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140kg chất A và 18kg chất B. Với mỗi tấn nguyên liệu loại I, người ta chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, người ta chiết xuất được10kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 9 triệu đồng và loại II là 7 triệu đồng. Tính chi phí ít nhất dùng để mua nguyên liệu mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Để đo chiều cao của một cây lớn, một bạn từ vị trí H trên ban công của một toà nhà, có độ cao so với mặt đất 12m, bạn đó dùng dụng cụ đo góc quan sát được cây AB dưới góc AHB = 50. Biết khoảng cách từ chân tường nhà đến gốc cây là KA m 50, tính chiều cao của cây (làm tròn đến hàng đơn vị). File WORD (dành cho quý thầy, cô):
Đề KSCL đội tuyển HSG lớp 10 môn Toán năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 10 môn Toán năm 2018 2019 trường Yên Lạc 2 Vĩnh Phúc Bản PDF - Nội dung bài viết Đề KSCL đội tuyển HSG Toán lớp 10 trường Yên Lạc 2 năm 2018 - 2019 Đề KSCL đội tuyển HSG Toán lớp 10 trường Yên Lạc 2 năm 2018 - 2019 Đề KSCL đội tuyển HSG Toán lớp 10 năm 2018 - 2019 của trường Yên Lạc 2 Vĩnh Phúc là bài kiểm tra được thiết kế để đánh giá năng lực Toán của học sinh trước khi họ tham gia kỳ thi học sinh giỏi Toán lớp 10 tỉnh Vĩnh Phúc. Đề thi bao gồm 10 bài toán tự luận, bao quát toàn bộ kiến thức Toán lớp 10 mà học sinh đã học trong quá trình bồi dưỡng. Thời gian làm bài thi Toán là 180 phút, đề thi đi kèm với lời giải chi tiết và thang điểm để giáo viên và học sinh có thể tự kiểm tra và đánh giá kết quả của mình. Đây là bước chuẩn bị quan trọng cuối cùng trước khi các em thí sinh tham gia kỳ thi chính thức. Ví dụ về một số bài toán trong đề thi bao gồm tính độ dài PN trong tam giác đều ABC, tìm tọa độ các đỉnh của tam giác trong hệ trục tọa độ và xác định giá trị của m để hai đồ thị đã cho cắt nhau tại hai điểm phân biệt AB = 4√5. Đề KSCL đội tuyển HSG Toán lớp 10 năm 2018 - 2019 trường Yên Lạc 2 Vĩnh Phúc sẽ giúp học sinh rèn luyện và củng cố kiến thức Toán một cách hiệu quả, chuẩn bị tốt nhất cho kỳ thi sắp tới.
Đề KSCL đội tuyển HSG lớp 10 môn Toán năm 2020 2021 trường Liễn Sơn Vĩnh Phúc
Nội dung Đề KSCL đội tuyển HSG lớp 10 môn Toán năm 2020 2021 trường Liễn Sơn Vĩnh Phúc Bản PDF - Nội dung bài viết Đề KSCL đội tuyển HSG lớp 10 môn Toán năm 2020-2021 trường Liễn Sơn Vĩnh Phúc Đề KSCL đội tuyển HSG lớp 10 môn Toán năm 2020-2021 trường Liễn Sơn Vĩnh Phúc Đề khảo sát chất lượng đội tuyển học sinh giỏi môn Toán lớp 10 năm học 2020 - 2021 trường THPT Liễn Sơn, tỉnh Vĩnh Phúc là bài thi đánh giá kiến thức và kỹ năng của học sinh. Đề thi gồm 10 bài toán dạng tự luận, đòi hỏi học sinh phải suy nghĩ logic, sáng tạo và có khả năng giải quyết vấn đề. Thời gian làm bài trong đề thi là 180 phút, đủ để học sinh có thời gian suy nghĩ, tính toán và trình bày lời giải của mình một cách cẩn thận. Trong đề thi, có các bài toán với nội dung phong phú và đa dạng. Ví dụ như bài toán về tam giác đều ABC, với yêu cầu chứng minh rằng đường thẳng MG luôn đi qua một điểm cố định. Hoặc bài toán về tìm giá trị của tham số m để phương trình có nghiệm thực và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt với hoành độ thỏa mãn điều kiện nào đó. Đề thi không chỉ đánh giá kiến thức mà còn khuyến khích học sinh phát huy tư duy logic, khả năng giải quyết vấn đề và kỹ năng phân tích, suy luận. Đây là bài thi hữu ích để chuẩn bị cho các kì thi quan trọng khác trong tương lai của học sinh.