Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá

Nội dung Đề KSCL Toán vào năm 2022 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Bản PDF - Nội dung bài viết Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Đề KSCL Toán vào năm 2022 - 2023 phòng GD ĐT Thọ Xuân Thanh Hoá Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán để ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá. Kỳ thi sẽ diễn ra vào ngày 02 tháng 06 năm 2022. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 - 2023 của phòng GD&ĐT Thọ Xuân - Thanh Hoá: + Cho nửa đường tròn có tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn tại K. Lấy điểm M thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại C, đoạn thẳng AM cắt đường thẳng d tại N, AC cắt nửa đường tròn tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2x^2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Tìm giá trị m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: x^2 + y^2 + z^2 = 1. Tìm giá trị nhỏ nhất của biểu thức: 2x^2y^2z^2 + y^2z^2x^2 + z^2x^2y^2. Đề thi năm nay đòi hỏi kiến thức và sự sáng tạo của các em học sinh. Chúc các em có kết quả tốt trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 sở GDĐT Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 sở GD&ĐT Hà Tĩnh : + Cho đường thẳng d có phương trình 2 y 2m 1 x 3m 2 với m là tham số. Tìm tất cả các giá trị của tham số m để đường thẳng đã cho song song với đường thẳng ∆ có phương trình y = x – 5. + Một ca nô chạy xuôi theo dòng nước từ bến A đến bến B, cùng lúc đó có một chiếc bè cũng trôi theo dòng nước từ A đến B, khoảng cách giữa hai bến là 30km. Khi ca nô đến bến B và quay trở lại bến A (ca nô không dừng nghỉ) thì gặp chiếc bè tại vị trí C cách bến A 10km. Hỏi vận tốc của ca nô khi nước đứng yên bằng bao nhiêu biết vận tốc dòng nước là 5km/h? + Cho hình thang vuông ABCD vuông tại A và D, CD là đáy lớn. Hai đường chéo AC và BD vuông góc với nhau tại O, biết AB cm 9 AD cm 12. Tính độ dài AO và CD. + Cho nửa đường tròn đường kính AB C là điểm thuộc nửa đường tròn (C khác A và B, sđ AC < sđ CB). Đường phân giác trong của góc ACB cắt AB tại D, đường thẳng vuông góc với AB tại D cắt đường thẳng AC tại M và cắt đường thẳng BC tại N. a. Chứng minh tứ giác BDCM là tứ giác nội tiếp. b. Gọi K là giao điểm của AN với nửa đường tròn, E là giao điểm của CK và tiếp tuyển của nửa đường tròn tại A. Chứng minh ND AD và tứ giác ADNE là hình vuông.
Đề khảo sát Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Hà Trung - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hà Trung, tỉnh Thanh Hóa; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 2 năm 2023 – 2024 phòng GD&ĐT Hà Trung – Thanh Hóa : + Cho phương trình 2 x m xm (2) 1 0 với m là tham số a) Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m b) Gọi 1 2 x là hai nghiệm phân biệt của phương trình. Tìm m để 2 x 6. + Cho tam giác ABC (AB AC) nội tiếp đường tròn tâm O. M là điểm nằm trên cung BC không chứa điểm A. Gọi D E F lần lượt là hình chiếu của M trên BC CA AB. a) Chứng minh bốn điểm M B D F cùng thuộc một đường tròn b) Chứng minh D E F thẳng hàng. c) Chứng minh BC AC AB MD ME MF. + Cho hai hàm số 2 Pyx và (d y xm) 2 3 với m là tham số. Tìm m để đường thẳng (d) đi qua điểm A thuộc (P) có hoành độ bằng 2.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Ba Đình - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Ba Đình, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Ba Đình – Hà Nội : + Giải toán bằng cách lập phương trình hoặc hệ phương trình: Để trang trí cho gian hàng hội chợ xuân, một lớp học dự định gấp 600 con hạc giấy trong một thời gian đã định. Thực tế các bạn nam đã làm vượt mức 18%, các bạn nữ đã làm vượt mức 21%. Vì vậy trong thời gian quy định họ đã hoàn thành vượt mức 120 con hạc giấy. Hỏi số hạc giấy mỗi đội nam, nữ của lớp phải làm theo kế hoạch? + Một lọ hoa hình trụ có đường kính đáy là 22 cm, chiều cao 45 cm. Người ta phủ một lớp men bóng mặt ngoài lọ hoa (không kể đáy). Tính diện tích cần phủ men (lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn AB AC nội tiếp đường tròn O và các đường cao AD BE CF của tam giác cắt nhau tại điểm H. 1) Chứng minh tứ giác BCEF là tứ giác nội tiếp. 2) Kẻ đường kính AK của đường tròn O. Chứng minh BAD KAC. 3) Gọi M và N lần lượt là trung điểm của các đoạn thẳng BC và EF. Hai đường thẳng AN và OM cắt nhau tại điểm I. Chứng minh tam giác ANF đồng dạng với tam giác AMC và IB là tiếp tuyến của O.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024.