Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 2024 phòng GD ĐT Hải Hậu Nam Định

Nội dung Đề thi thử Toán vào 10 lần 1 năm 2023 2024 phòng GD ĐT Hải Hậu Nam Định Bản PDF Đề thi thử môn Toán vào lớp 10 lần 1 năm 2023 - 2024 được tổ chức bởi phòng Giáo dục và Đào tạo huyện Hải Hậu, tỉnh Nam Định đã được Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9. Đề thi bao gồm 20% câu hỏi trắc nghiệm và 80% câu hỏi tự luận, thời gian làm bài là 120 phút. Đề thi cung cấp đáp án và hướng dẫn chấm điểm để giúp các em tự kiểm tra và tự đánh giá kết quả của mình.

Một số câu hỏi thú vị trong đề thi bao gồm:
- Tính diện tích phần hình nằm ngoài nửa hình tròn, với điều kiện đã cho.
- Chứng minh tính chất của tứ giác OHME là tứ giác nội tiếp và OE // BH.
- Xác định thời gian Quang làm một mình để hoàn thành công việc, dựa vào thông tin về Quang và Minh làm công việc cùng nhau và mỗi người làm riêng.

Đề thi thử này không chỉ giúp các em học sinh ôn tập kiến thức, mà còn giúp họ rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và tự học tập. Chúc các em thực hiện đề thi thử một cách tốt nhất và đạt được kết quả cao trong kỳ thi tuyển sinh vào lớp 10 THPT.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Bình Dương
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Bình Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai đội công nhân đắp đê ngăn triều cường. Nếu hai đội cùng làm thì trong 6 ngày xong việc. Nếu làm riêng thì đội I hoàn thành công việc chậm hơn đội II là 9 ngày. Hỏi nếu làm riêng thì mỗi đội đắp xong đê trong bao nhiêu ngày? + Ta giác AMB cân tại M nội tiếp trong đường tròn (O; R). Kẻ MH vuông góc AB (H thuộc AB), MH cắt đường tròn tại N. Biết MA = 10cm, AB = 12cm [ads] a) Tính MH và bán kính R của đường tròn b) Trên tia đối tia BA lấy điểm C. MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh tứ giác MDEH nội tiếp và chứng minh các hệ thức sau: NB^2 = NE.ND và AC.BE = BC.AE c) Chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Nam Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Nam Định gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, có đáp án và lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A đường cao AH. đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C) 1) Chứng minh AM.AB = AN.AC và AN.AC = MN^2 2) Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Chứng minh IO vuông góc với đường thẳng MN 3) Chứng minh 4(EN^2 + FM^2) = BC^2 + 6AH^2 [ads] + Cho tam giác ABC vuông tại A đường cao AH biết BH = 4cm và CH = 16cm độ dài đường cao AH bằng? + Cho hình nón có bán kính bằng 3 cm chiều cao bằng 4cm diện tích xung quanh của hình nón đã cho bằng?
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hải Dương
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Tháng đầu, hai tổ sản xuất được 900 chi tiết máy. Tháng thứ hai, do cải tiến kỹ thuật nên tổ I vượt mức 10% vả tổ II vượt mức 12% so với tháng đầu, vì vậy, hai tổ đã sản xuất được 1000 chi tiết máy. Hỏi trong tháng đầu mỗi tổ sản xuất được bao nhiêu chi tiết máy? + Cho đường tròn tâm O, bán kính R. Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là các tiếp điểm). Qua A, kẻ đường thẳng song song với MO cắt đường tròn tại E (E khác A), đường thẳng ME cắt đường tròn tại F (F khác E), đường thẳng AF cắt MO tại N, H là giao điểm của MO và AB [ads] 1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn 2) Chứng minh: MN^2 = NF.NA và MN = NH 3) Chứng minh: HB^2/HF^2 – EF/MF = 1
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THPT chuyên Lê Quý Đôn - Bình Định
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THPT chuyên Lê Quý Đôn – Bình Định gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Hai thành phố A và B cách nhau 450 km. Một ô tô đi từ A đến B với vận không đổi trong một thời gian dự định. Khi đi, ô tô tăng vận tốc hơn dự kiến 5 km/h nên đã đến B sớm hơn 1 giờ so với thời gian dự định. Tính vận tốc dự kiến ban đầu của ô tô. + Cho đường tròn (O), dây BC không phải là đường kính. Các tiếp tuyến của (O) tại B và C cắt nhau ở A. Lấy điểm M trên cung nhỏ BC (M khác B và C), gọi I,H,K lần lượt là chân đường vuông góc hạ từ M xuống BC,CA và AB. Chứng minh: [ads] a) Các tứ giác BKMI; CHMI nội tiếp b) MI^2 = MK.MH c) BM cắt IK tại D, CM cắt IH tại E. Chứng minh DE//BC