Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2019 2020 phòng GD ĐT Chí Linh Hải Dương

Nội dung Đề thi thử Toán vào năm 2019 2020 phòng GD ĐT Chí Linh Hải Dương Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2019 2020 phòng GD ĐT Chí Linh Hải Dương Đề thi thử Toán vào năm 2019 2020 phòng GD ĐT Chí Linh Hải Dương Trong tháng 5 năm 2019, phòng Giáo dục và Đào tạo UBND thành phố Chí Linh, tỉnh Hải Dương đã tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 dành cho học sinh lớp 9. Mục tiêu của kỳ thi là để giúp các em học sinh thử sức, rút ra kinh nghiệm cần thiết và xác định cách thức ôn tập hợp lý cho kỳ thi chính thức sắp tới. Đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn chặt chẽ theo cấu trúc đề thi môn Toán tuyển sinh vào lớp 10 THPT sở GD&ĐT tỉnh Hải Dương. Đề gồm 1 trang với 5 bài toán tự luận, học sinh có 90 phút để làm bài thi. Cụ thể về một số bài toán trong đề thi: Trong một phòng họp dự định có 120 người, nhưng thực tế khi họp có 160 người tham dự. Để đủ chỗ ngồi, phải kê thêm 2 dãy ghế và mỗi dãy cần kê thêm một ghế nữa. Hỏi số dãy ghế dự định lúc đầu là bao nhiêu? Cho phương trình x^2 + 3x + m – 1 = 0, tìm giá trị của m để phương trình có hai nghiệm thỏa mãn một điều kiện cho trước. Cho tam giác ABC có 3 góc nhọn, nội tiếp đường tròn tâm O. Xác định các tính chất của tam giác và chứng minh các mệnh đề liên quan đến đường tròn và tam giác. Đề thi thử Toán vào lớp 10 năm 2019 – 2020 phòng GD&ĐT Chí Linh – Hải Dương là cơ hội tốt để học sinh rèn luyện và chuẩn bị tốt nhất cho kỳ thi sắp tới. Hy vọng rằng các em sẽ đạt kết quả tốt trong công cuộc chinh phục môn Toán này.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Long An
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Long An gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai hàm số : y = -x2 và y = 2x – 5. Vẽ đồ thị hai hàm số đã cho trên cùng mặt phẳng tọa độ Oxy. + Viết phương trình đường thẳng (d): y = ax + b, biết (d) đi qua hai điểm A(-1; 10); B(3; -2). + Cho đường tròn (O) đường kính AC. Trên bán kính OC lấy điểm B tùy ý (B không trùng O và C). Gọi M là trung điểm của đoạn thẳng AB. Qua M kẻ dây cung DE vuông góc với AB. Kẻ BI vuông góc với CD (I thuộc CD). [ads] a) Cho AM = 4cm; MC = 9cm. Tình độ dài đoạn thẳng MD và tanA của tam giác MDA. b) Chứng minh : BMDI là tứ giác nội tiếp. c) Chứng minh ADBE là hình thoi và ba điểm I; B; E thẳng hàng. d) Gọi O’ là tâm đường tròn đường kính BC. Chứng minh: MI là tiếp tuyến của (O’).
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Thanh Hóa
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Thanh Hóa gồm 4 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho phương trình: nx^2 + x – 2 = 0 (1), với n là tham số. a) Giải phương trình (1) khi n = 0. b) Giải phương trình (1) khi n = 1. [ads] + Cho nửa đường tròn (O) đường kính MN = 2R. Gọi (d) là tiếp tuyến của (O) tại N. Trên cung MN lấy điểm E tùy ý (E không trùng với M và N), tia ME cắt (d) tại điểm F. Gọi P là trung điểm của ME, tia PO cắt (d) tại điểm Q. 1. Chứng minh ONFP là tứ giác nội tiếp. 2. Chứng minh: OF vuông góc với MQ và PM.PF = PO.PQ. 3. Xác định vị trí điểm E trên cung MN để tổng MF + 2ME đạt giá trị nhỏ nhất.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT An Giang
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT An Giang gồm 5 bài toán tự luận, có lời giải chi tiết. Lời giải của thầy Nguyễn Chí Dũng. Trích một số bài toán trong đề: + Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax với nửa đường tròn đó (Ax nằm trên cùng nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc CAx cắt nửa đường tròn tại D. Kéo dài AD và BC cắt nhau tại E. Kẻ EH vuông góc với Ax tại H a. Chứng minh tứ giác AHEC nội tiếp. b. Chứng minh hai góc ABD và DBC bằng nhau. c. Chứng minh tam giác ABE cân. d. Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi. [ads] + Ngọn Hải đăng Kê Gà ở tỉnh Bình Thuận là ngọn tháp thắp đèn gần bờ biển dùng để định hướng cho tàu thuyền giao thông trong khu vực vào ban đêm. Đây là ngọn Hải đăng được xem là cổ xưa và cao nhất Việt Nam, chiều cao của ngọn đèn so với mặt nước biển là 65m. Hỏi: a. Một người quan sát đứng tại vị trí đèn của Hải đăng nhìn xa tối đa bao nhiêu km trên mặt biển? b. Cách bao xa thì một người quan sát đứng ở trên tàu bắt đầu trông thấy ngọn đèn này, biết rằng mắt người quan sát đứng ở trên tàu có độ cao 5m so với mặt nước biển? (Cho biết bán kính Trái Đất gần bằng 6400km và điều kiện quan sát trên biển là không bị che khuất).
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Phúc gồm 5 bài toán tự luận, có lời giải chi tiết.