Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm đoạn thẳng, độ dài đoạn thẳng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề đoạn thẳng, độ dài đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Đoạn thẳng AB là gì? + Đoạn thẳng AB hay đoạn thẳng BA là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. + A, B là hai đầu mút (mút) của đoạn thẳng AB. 2. Độ dài đoạn thẳng. + Mỗi đoạn thẳng có một độ dài. Khi chọn một đơn vị độ dài thì độ dài mỗi đoạn thẳng được biểu diễn bởi một số dương (thường viết kèm đơn vị). + Độ dài đoạn thẳng AB còn gọi là khoảng cách giữa hai điểm A và B. Ta quy ước khoảng cách giữa hai điểm trùng nhau bằng 0 (đơn vị). 3. So sánh độ dài hai đoạn thẳng. + Hai đoạn thẳng AB và EG có cùng độ dài. Ta viết AB EG và nói đoạn thẳng AB bằng đoạn thẳng EG. + Đoạn thẳng AB có độ dài nhỏ hơn đoạn thẳng CD. Ta viết AB CD và nói AB ngắn hơn CD. Hoặc CD AB và nói CD dài hơn AB. 4. Các dạng toán thường gặp. Dạng 1: Nhận biết đoạn thẳng. Phương pháp: Ta sử dụng định nghĩa: Đoạn thẳng AB là hình gồm hai điểm A, B cùng với các điểm nằm giữa A và B. Dạng 2: Xác định số đoạn thẳng. Phương pháp: Với n điểm phân biệt cho trước n N n 2 thì số đoạn thẳng vẽ được là 1 2 n n. Dạng 3: Tính độ dài đoạn thẳng. So sánh hai đoạn thẳng. Phương pháp: + Tìm độ dài mỗi đoạn thẳng: Ta vận dụng kiến thức “Nếu điểm M nằm giữa hai điểm A và B thì AM MB AB”. + Ta so sánh các đoạn thẳng: Hai đoạn thẳng bằng nhau nếu có cùng độ dài. Đoạn thẳng lớn hơn nếu có độ dài lớn hơn. B. BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm hình tam giác đều, hình vuông, hình lục giác đều
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề hình tam giác đều, hình vuông, hình lục giác đều, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Hình vuông. Hình vuông ABCD có: + Bốn đỉnh A B C D. + Bốn cạnh bằng nhau AB BC CD DA. + Bốn góc bằng nhau và bằng góc vuông. + Hai đường chéo là AC và BD. 2. Tam giác đều. Tam giác đều ABC có: + Ba đỉnh A B C. + Ba cạnh bằng nhau AB BC CA. + Ba góc đỉnh A B C bằng nhau. 3. Lục giác đều. Hình ABCDEF gọi là hình lục giác đều có: + Sáu đỉnh A, B, C, D, E, F. + Sáu cạnh bằng nhau AB BC CD DE EF FA. + Sáu góc đỉnh A, B, C, D, E, F bằng nhau. Ba đường chéo chính là AD, BE, CF. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm phép chia hết, ước và bội của một số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép chia hết, ước và bội của một số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Phép chia hết. Với a b b 0 nếu có số nguyên q sao cho a bq thì ta có phép chia hết a b q và ta nói a chia hết cho b, kí hiệu là a b. Thương của hai số nguyên trong phép chia hết là một số dương nếu hai số đó cùng dấu và là một số âm khi hai số đó khác dấu. 2. Ước và bội. Nếu a b thì ta gọi a là một bội của b và b là một ước của a a b b. Nếu a là một bội của b thì -a cũng là một bội của b. Nếu b là một ước của a thì -b cũng là một ước của a. Chú ý: Số 0 là bội của mọi số nguyên khác 0. Số 0 không phải là ước của bất kì số nguyên nào. Các số 1 và -1 là ước của mọi số nguyên. Nếu d vừa là ước của a, vừa là ước của b thì ta gọi d là một ước chung của a và b a b d d. Trong tập hợp các số nguyên cũng có các tính chất về chia hết tương tự như trong tập số tự nhiên. 3. Cách chia hai số nguyên (trường hợp chia hết). a. Nếu số bị chia bằng 0 và số chia khác 0 thì thương bằng 0. b. Nếu chia hai số nguyên khác 0 thì: Bước 1: Chia phần tự nhiên của hai số. Bước 2: Đặt dấu “+” trước kết quả nếu hai số cùng dấu. Đặt dấu “-” trước kết quả nếu hai số trái dấu. 4. Cách tìm ước và bội. Muốn tìm tất cả các ước của một số nguyên a, ta lấy các ước dương của a cùng với các số đối của chúng. Muốn tìm các bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Tìm bội và ước của một nguyên. Để tìm bội của một số nguyên, ta nhân số đó với 0; 1; 2; 3; …. Để tìm ước của một số nguyên dương, ta phân tích số đó ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Để tìm ước của một số nguyên âm, ta phân tích phần tự nhiên của số đó (hoặc số đối của số đó) ra thừa số nguyên tố rồi tìm các ước tự nhiên và số đối của các ước đó. Dạng 2: Xét tính chia hết của một tổng, hiệu và tích cho một số. Cho a b c c Nếu a c a b c Nếu a c b c a b c a b c Nếu a c b. Chú ý : a c b c thì không thế kết luận được về tính chia hết của a b a b cho c. Dạng 3: Tìm số nguyên x thỏa mãn điều kiện chia hết. Phương pháp: Cho a b c c Nếu a b c b c Nếu a c b c a b c Nếu a c a b. Chú ý: a c và a b c thì không thế kết luận được về tính chia hết của b cho c.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề phép nhân số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Lý thuyết. 1. Nhân hai số nguyên khác dấu. + Bước 1: Bỏ dấu “-” trước số nguyên âm, giữ số nguyên còn lại. + Bước 2: Lấy tích hai số nguyên dương nhận được ở bước 1. + Bước 3: Đặt dấu “-” trước kết quả nhận được ở bước 2 ta có tích cần tìm. 2. Nhân hai số nguyên cùng dấu âm. – Quy tắc: + Bước 1: Bỏ dấu “-” trước cả hai số nguyên âm. + Bước 2: Lấy tích hai số nguyên dương nhận được ở bước 1 ta có tích cần tìm. 3. Nhân hai số nguyên cùng dấu dương. Khi nhân hai số nguyên dương ta nhân như nhân hai số tự nhiên. 4. Quy tắc dấu khi thực hiện phép nhân, chia số nguyên. Cách nhận biết dấu của kết quả khi thực hiện phép nhân hai số nguyên. 5. Tính chất của phép nhân số nguyên. Phép nhân số nguyên có các tính chất: 1. Giao hoán. 2. Kết hợp. 3. Phân phối của phép nhân với phép cộng, trừ. 2. Các dạng toán thường gặp. a) Dạng 1: Thực hiện phép nhân số nguyên. + Thực hiện theo quy tắc nhân hai số nguyên cùng dấu và khác dấu: Với hai số nguyên dương a b ta có: a b a b ab. + Chú ý quy tắc dấu khi nhân hai số nguyên. + Quan sát một số biểu thức có thể tính nhanh khi thực hiện phép nhân theo các tính chất: Giao hoán; Kết hợp; Phân phối của phép nhân với phép cộng, trừ. b) Dạng 2: Tìm x. + Xét xem: Điều cần tìm (thường được gọi là x) hoặc biểu thức liên quan đóng vai trò là gì trong phép toán (số hạng, số trừ, số bị trừ, thừa số, số chia, số bị chia) (Số hạng) = (Tổng) – (Số hạng đã biết) (Số trừ) = (Số bị trừ – Hiệu) (Số bị trừ) = (Hiệu) + (Số trừ) (Thừa số) = (Tích) : (Thừa số đã biết) (Số chia) = (Số bị chia) :(Thương) (Số bị chia) = (Thương). (Số chia). + Thực hiện theo hướng dẫn trên tìm các biểu thức liên quan đến x trước (nếu có) sau đó mới xét tìm x. Chú ý sử dụng nhiều trường hợp (Số bị chia) = (Thương) . (Số chia). c) Dạng 3: Toán có lời văn (Toán thực tế). + Đọc kĩ đề bài tóm tắt bài toán: Xem bài toán cho biết gì và yêu cầu tìm gì? + Biểu thị số nguyên âm trong bài (nếu có). Lưu ý số nguyên âm thường biểu thị nhiệt độ âm, độ cao dưới mực nước biển, số tiền lỗ, số điểm bị trừ, năm trước công nguyên. + Dùng kiến thức thực tế xác định đúng phép nhân và thực hiện. Ví dụ: Quãng đường đi được = Vận tốc . Thời gian. Tiền công = Số tiền của một sản phẩm . Số sản phẩm. Số điểm = Số câu trả lời . Số điểm của một câu. B. BÀI TẬP
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quy tắc dấu ngoặc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề quy tắc dấu ngoặc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Lý thuyết. QUY TẮC DẤU NGOẶC: – Khi bỏ dấu ngoặc có dấu “+” đằng trước, ta giữ nguyên dấu của các số hạng trong ngoặc. – Khi bỏ dấu ngoặc có dấu “-” đằng trước ta phải đổi dấu tất cả các số hạng trong ngoặc: dấu “+” đổi thành “-” và dấu “-” đổi thành “-”. LƯU Ý: Một dãy các phép tính cộng, trừ các số nguyên cũng được gọi là một tổng. Áp dụng các tính chất giao hoán, kết hợp và quy tắc dấu ngoặc, trong một biểu thức, ta có thể: + Thay đổi tuỳ ý vị trí của các số hạng kèm theo dấu của chúng. + Đặt dấu ngoặc để nhóm các số hạng một cách tuỳ ý. Nếu trước dấu ngoặc là dấu “-” thì phải đổi dấu tất cả các số hạng trong ngoặc. 2. Các dạng toán thường gặp. a) Dạng 1: Thực hiện phép tính. Phương pháp: Bỏ dấu ngoặc theo quy tắc rồi tính. b) Dạng 2: Tìm x. Phương pháp: Rút gọn, xác định vai trò của x trong phép toán. B. BÀI TẬP