Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Lý Thái Tổ Bắc Ninh

Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2023 2024 trường THPT Lý Thái Tổ Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra khảo sát chất lượng lần 1 môn Toán lớp 11 năm học 2023 – 2024 trường THPT Lý Thái Tổ, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm mã đề 000 101 102 103 104 105 106 107 108. Trích dẫn Đề khảo sát lần 1 Toán lớp 11 năm 2023 – 2024 trường THPT Lý Thái Tổ – Bắc Ninh : + Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là: A. Giao điểm của SD và AM. B. Giao điểm của SD và MK (với K SO AM). C. Giao điểm của SD và AB. D. Giao điểm của SD và BK (với K SO AM). + Tìm hiểu tiền công khoan giếng ở hai cơ sở khoan giếng, người ta được biết: – Ở cơ sở A: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 10.000 đồng so với giá của mét khoan ngay trước. – Ở cơ sở B: Giá của mét khoan đầu tiên là 50.000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 8% giá của mét khoan ngay trước. Một người muốn chọn một trong hai cơ sở nói trên để thuê khoan một cái giếng sâu 30 mét, một cái giếng sâu 40 mét ở hai địa điểm khác nhau. Hỏi người ấy nên chọn cơ sở khoan giếng nào cho từng giếng để chi phí khoan hai giếng là ít nhất. Biết chất lượng và thời gian khoan giếng của hai cơ sở là như nhau. A. Chọn cơ sở A để khoan cả hai giếng. B. Chọn cở sở A khoan giếng 40 mét, chọn cơ sở B khoan giếng 30 mét. C. Chọn cơ sở B để khoan cả hai giếng. D. Chọn cở sở A khoan giếng 30 mét, chọn cơ sở B khoan giếng 40 mét. + Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t(h) được cho bởi công thức 3cos 12 6 3. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 11 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).
Đề Olympic 27 tháng 4 Toán 11 năm 2020 - 2021 sở GDĐT Bà Rịa - Vũng Tàu
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề HSG cấp trường Toán 11 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2020 – 2021. Đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 02 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 11 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Trong hệ tọa độ Oxy, cho hình thoi ABCD cạnh AC có phương trình là, hai đỉnh B, D lần lượt thuộc các đường thẳng. Biết rằng diện tích hình thoi bằng 75, đỉnh A có hoành độ âm. Tìm toạ độ các đỉnh hình thoi. + Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn BC = 2a đáy bé AD, AB. Mặt bên SAD là tam giác đều, M là một điểm di động trên AB, mặt phẳng (P) đi qua M và song song với SA, BC. a) Tìm thiết diện của hình chóp khi cắt bởi (P). Thiết diện là hình gì? b) Tính diện tích thiết diện theo a, b và x AM x b. Tìm x theo b để diện tích thiết diện lớn nhất. + Tam giác mà ba đỉnh của nó là ba trung điểm ba cạnh của tam giác ABC được gọi là tam giác trung bình của tam giác ABC. Ta xây dựng dãy các tam giác sao cho là một tam giác đều cạnh bằng 3 và với mỗi số nguyên dương n ≥ 2, tam giác A B C là tam giác trung bình của tam giác A B C n n n. Với mỗi số nguyên dương n, kí hiệu Sn tương ứng là diện tích hình tròn ngoại tiếp tam giác A B C n n n. Tính tổng 1 2 n S S S S.
Đề chọn HSG Toán 11 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5.