Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và một số dạng toán đường tròn - Nguyễn Ngọc Dũng

Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Nguyễn Ngọc Dũng, tóm tắt lý thuyết và tuyển tập một số dạng toán đường tròn, giúp học sinh lớp 9 học tốt chương trình Hình học 9 chương 2 (SGK Toán 9 tập 1). Mục lục : CHƯƠNG 2 Đường tròn 3. 1 Sự xác định đường tròn. Tính chất đối xứng của đường tròn 3. Dạng 1. Chứng minh nhiều điểm cùng thuộc một đường tròn 3. + Chứng minh các điểm đã cho cách đều một điểm. + Tâm của đường tròn ngoại tiếp tam giác vuông là trung điểm của cạnh huyền. 2 Đường kính và dây của đường tròn. Liên hệ giữa dây và khoảng cách từ tâm đến dây 5. Dạng 1. Chứng minh hai đoạn thẳng bằng nhau. Hai dây bằng nhau 5. + Trong một đường tròn, hai dây bằng nhau thì cách đều tâm và ngược lại. + Chứng minh hai tam giác bằng nhau. Dạng 2. Tính độ dài một đoạn thẳng – Độ dài một dây cung 6. + Xác định khoảng cách từ tâm đến dây. + Áp dụng định lý Py-ta-go cho tam giác vuông có cạnh huyền là bán kính của đường tròn. Dạng 3. So sánh hai dây cung – Hai đoạn thẳng 6. + Xác định khoảng cách từ tâm đến dây. + Trong hai dây cung của một đường tròn, dây nào lớn hơn thì gần tâm hơn và ngược lại. + Quan hệ giữa đường vuông góc và đường xiên: Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường vuông góc là đường ngắn nhất. 3 Vị trí tương đối của đường thẳng và đường tròn. Tiếp tuyến của đường tròn 8. Dạng 1. Tính độ dài một đoạn tiếp tuyến 8. + Xác định tam giác vuông có đỉnh góc vuông là tiếp điểm. + Áp dụng hệ thức lượng trong tam giác vuông để tính. Dạng 2. Chứng minh một đường thẳng là tiếp tuyến của đường tròn 9. + A thuộc (O), A thuộc d và d vuông góc OA suy ra d là tiếp tuyến của (O). Dạng 3. Tính chất của hai tiếp tuyến cắt nhau 10. + MA và MB là hai tiếp tuyến của (O). Khi đó: MA = MB; MO là đường phân giác của AMB và AOB. 4 Vị trí tương đối của hai đường tròn 12.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông
Tài liệu gồm 30 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề tỉ số lượng giác của góc nhọn, hệ thức về cạnh và góc trong tam giác vuông, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 1. A. KIẾN THỨC CẦN NHỚ B. CÁC DẠNG BÀI TẬP CƠ BẢN VÀ NÂNG CAO Dạng 1 : Các bài toán tính toán. 1. Phương pháp giải. + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. 2. Bài tập minh họa. Dạng 2 : Chứng minh đẳng thức, mệnh đề. 1. Phương pháp giải. Đưa mệnh đề về dạng đẳng thức, sử dụng hệ thức lượng và một số kiến thức đã học biến đổi các vế trong biểu thức, từ đó chứng minh các vế bằng nhau. 2. Bài tập minh họa. C. TRẮC NGHỆM RÈN LUYỆN PHẢN XẠ D. HƯỚNG DẪN GIẢI
Chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông
Tài liệu gồm 29 trang, tóm tắt lý thuyết, phân dạng và tuyển chọn các bài tập chuyên đề một số hệ thức về cạnh và đường cao trong tam giác vuông, hỗ trợ học sinh trong quá trình học chương trình Hình học 9 chương 1 bài số 1. A. LÝ THUYẾT B. DẠNG BÀI MINH HỌA I. Bài toán và các dạng bài và phương pháp. Dạng 1 : Chứng minh hệ thức. Phương pháp giải: Sử dụng định lý Ta-lét và hệ thức lượng đã học biến đổi các vế, đưa về dạng đơn giản để chứng minh. Dạng 2 : Tìm độ dài đoạn thẳng, số đo góc. Phương pháp giải: + Bước 1: Đặt độ dài cạnh, góc bằng ẩn. + Bước 2: Thông qua giả thiết và các hệ thức lượng lập phương trình chứa ẩn. + Bước 3: Giải phương trình, tìm ẩn số. Từ đó tính độ dài đoạn thẳng hoặc góc cần tìm. Dạng 3 . Bài toán thực tế liên quan. III. Trắc nghiệm rèn phản xạ. III. Phiếu bài tự luyện. IV. Hướng dẫn giải.
Chuyên đề giải bài toán bằng cách lập phương trình
Tài liệu gồm 52 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề giải bài toán bằng cách lập phương trình, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 8. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT Các bước giải bài toán bằng cách lập phương trình: Bước 1. Lập phương trình: + Chọn ẩn số và đặt điều kiện cho ẩn số. + Biểu diễn các dữ kiện chưa biết qua ẩn số. + Lập phương trình biểu thị tương quan giữa ẩn số và các dữ kiện đã biết. Bước 2. Giải phương trình. Bước 3. Đối chiếu nghiệm của phương trình với điều kiện của ẩn số (nếu có) và với đề bài để đưa ra kết luận. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Bài toán về năng suất lao động. Năng suất được tính bằng tỉ số giữa khối lượng công việc và thời gian hoàn thành. Dạng 2 . Toán về công việc làm chung, làm riêng. Thường coi khối lượng công việc là 1 đơn vị. Năng suất 1 + Năng suất 2 = Tổng năng suất. Dạng 3 . Toán về quan hệ các số. Dạng 4 . Toán có nội dung hình học. Dạng 5 . Toán chuyển động. Quãng đường = Vận tốc x Thời gian. Dạng 6 . Toán về chuyển động trên dòng nước. Vận tốc tàu khi xuôi dòng = Vận tốc của tàu khi nước yên lặng + Vận tốc dòng nước. Vận tốc tàu khi ngược dòng = Vận tốc của tàu khi nước yên lặng – Vận tốc dòng nước. Dạng 7 . Các dạng khác. III. BÀI TẬP VỀ NHÀ B. NÂNG CAO – PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN PHẢN XẠ D. PHIẾU BÀI TẬP TỰ LUYỆN
Chuyên đề phương trình quy về phương trình bậc hai
Tài liệu gồm 39 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề phương trình quy về phương trình bậc hai, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 4 bài số 7. A. TRỌNG TÂM CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Phương trình trùng phương. 2. Phương trình chứa ẩn ở mẫu thức. 3. Phương trình đưa về dạng tích. 4. Một số dạng khác của phương trình thường gặp. II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Giải phương trình trùng phương. Xét phương trình trùng phương: ax^4 + bx2 + c = 0 (a ≠ 0). + Bước 1. Đặt t = x^2 (t ≥ 0) ta được phương trình bậc hai: at^2 + bt + c = 0 (a ≠ 0). + Bước 2. Giải phương trình bậc hai ẩn t từ đó ta tìm được các nghiệm của phương trình trùng phương đã cho. Dạng 2 . Phương trình chứa ẩn ở mẫu thức. Để giải phương trình chứa ẩn ở mẫu thức, ta có các bước giải như sau: + Bước 1. Tìm điều kiện xác định của ẩn. + Bước 2. Quy đồng mẫu thức hai vế rồi khử mẫu. + Bước 3. Giải phương trình bậc hai nhận được ở bước 2. + Bước 4. So sánh các nghiệm tìm được ở bước 3 với điều kiện xác định và kết luận. Dạng 3 . Phương trình đưa về dạng tích. Để giải phương trình đưa về dạng tích, ta có các bước giải như sau: + Bước 1. Chuyển vế và phân tích vế trái thành nhân tử, vế phải bằng 0. + Bước 2. Xét từng nhân tử bằng 0 để tìm nghiệm. Dạng 4 . Giải phương trình bằng phương pháp đặt ẩn phụ. + Bước 1. Đặt điều kiện xác định (nếu có). + Bước 2. Đặt ẩn phụ, đặt điều kiện của ẩn phụ (nếu có) và giải phương trình theo ẩn mới. + Bước 3. Tìm nghiệm ban đầu và so sánh với điều kiện xác định và kết luận. Dạng 5 . Phương trình chứa biểu thức trong dấu căn. Làm mất dấu căn bằng cách đặt ẩn phụ hoặc lũy thừa hai vế. Dạng 6 . Một số dạng khác. Ngoài các phương pháp trên, ta còn dùng các phương pháp hằng đẳng thức, thêm bớt hạng tử, hoặc đánh giá hai vế … để giải phương trình. III. BÀI TẬP VỂ NHÀ B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO