Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức

Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức, một chủ đề rất quan trọng trong chương trình Giải tích 12 chương 4: Số phức. Bên cạnh tài liệu phương trình bậc hai với hệ số thực trên tập số phức dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm phương trình bậc hai với hệ số thực trên tập số phức: A. KIẾN THỨC CƠ BẢN 1. Căn bậc hai của số phức. 2. Phương trình bậc hai với hệ số thực. B. KỸ NĂNG CƠ BẢN 1. Dạng 1 : Tìm căn bậc hai của một số phức. 2. Dạng 2 : Giải phương trình bậc hai với hệ số thực và các dạng toán liên quan. a. Giải các phương trình bậc hai với hệ số thực. b. Giải phương trình quy về phương trình bậc hai với hệ số thực. Phương pháp 1 : Phân tích đa thức thành nhân tử. + Bước 1: Nhẩm một nghiệm đặc biệt của phương trình. + Bước 2: Đưa phương trình về phương trình bậc nhất hoặc bậc hai bằng cách phân tích đa thức ở vế trái của phương trình thành nhân tử (dùng hằng đẳng thức, chia đa thức hoặc sử dụng lược đồ Hoocne). + Bước 3: Giải phương trình bậc nhất hoặc bậc hai, kết luận nghiệm. Phương pháp 2 : Đặt ẩn phụ: + Bước 1: Phân tích phương trình thành các đại lượng có dạng giống nhau. + Bước 2: Đặt ẩn phụ, nêu điều kiện của ẩn phụ (nếu có). + Bước 3: Đưa phương trình ban đầu về phương trình bậc nhất, bậc hai với ẩn mới. + Bước 4: Giải phương trình, kết luận nghiệm. C. KỸ NĂNG SỬ DỤNG MÁY TÍNH 1. Chọn chế độ tính toán với số phức. 2. Tìm các căn bậc hai của một số phức. D. BÀI TẬP TRẮC NGHIỆM E. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

4 đề trắc nghiệm chuyên đề số phức - Bùi Thế Việt
Tài liệu gồm 44 trang bao gồm 4 đề trắc nghiệm chuyên đề số phức do tác giả Bùi Thế Việt biên soạn, mỗi đề gồm 105 câu trắc nghiệm số phức với phần lớn là các câu hỏi và bài toán có độ khó cao, tài liệu thích hợp để tìm hiểu và rèn luyện các bài toán vận dụng cao về chủ đề số phức, đây là dạng toán thường được sử dụng để phát triển các câu phân loại trong đề thi THPT Quốc gia môn Toán, đề tuyển sinh Đại học – Cao đẳng môn Toán. Trích dẫn tài liệu 4 đề trắc nghiệm chuyên đề số phức – Bùi Thế Việt : + Cho số phức u = 2 − 5i và v = −3 + 2i. Nhận xét nào sau đây là sai? A. u − v = 5 − 7i. B. 3u − v = 9 + 9i. C. u + v = −1 − 3i. D. 2u − 3v = 13 − 16i. [ads] + Khi số phức z thay đổi tùy ý thì tập hợp các số 2z + 2z‾ là? A. Tập hợp các số thực dương. B. Tập hợp các số thực không âm. C. Tập hợp các số thực. D. Tập hợp các số phức không phải số ảo. + Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z − 3| = |z + i|. A. Đường thẳng y = −4x + 1. B. Đường thẳng y = −5x + 3. C. Đường thẳng y = −3x + 4. D. Đường thẳng y = −x + 3.
600 câu hỏi trắc nghiệm chuyên đề số phức - Nhóm Toán
Tài liệu 600 câu hỏi trắc nghiệm chuyên đề số phức được biên soạn bởi quý thầy, cô giáo trên groups Nhóm Toán gồm 80 trang tuyển chọn các bài toán số phức hay và đặc sắc, giúp tạo nguồn đề cho giáo viên và giúp học sinh có thêm nhiều bài tập để rèn luyện nâng cao kỹ năng giải toán trắc nghiệm số phức, tài liệu đáp ứng xu hướng đề thi trắc nghiệm môn Toán mà Bộ Giáo dục và Đào tạo đang triển khai. 600 câu hỏi số phức trong tài liệu được được chia nhỏ thành 7 đề, mỗi đề gồm 70 đến 100 câu, các câu hỏi đều có đáp án, thầy, cô và các em có thể tra cứu đáp án câu hỏi dựa vào bảng đáp án ở sau mỗi đề. Trích dẫn tài liệu 600 câu hỏi trắc nghiệm chuyên đề số phức – Nhóm Toán : + Trong các kết luận sau, kết luận nào sai? A. Mô đun của số phức z là một số thực. B. Mô đun của số phức z là một số thực dương. C. Mô đun của số phức z là một số phức. D. Mô đun của số phức z là một số thực không âm. [ads] + Gọi A là điểm biểu diễn của số phức z = 3 +2i và B là điểm biểu diễn của số phức z’ = 2 + 3i. Tìm mệnh đề đúng của các mệnh đề sau: A. Hai điểm A và B đối xứng với nhau qua gốc tọa độ O. B. Hai điểm A và B đối xứng với nhau qua trục tung. C. Hai điểm A và B đối xứng nhau qua trục hoành. D. Hai điểm A và B đối xứng với nhau qua đường thẳng y = x. + Trong mặt phẳng phức, tập hợp điểm biểu diễn cho số phức z thỏa |z + 3 – 2i| = 4 là: A. Đường tròn tâm I(-3;2), bán kính R = 4. B. Đường tròn tâm I(3;-2), bán kính R = 16. C. Đường tròn tâm I(3;-2), bán kính R = 4. D. Đường tròn tâm I(-3;2), bán kính R = 16.