Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên 2023 lần 1 Toán chuyên trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi thử vào 10 chuyên 2023 lần 1 Toán chuyên trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Đề thi thử vào 10 chuyên 2023 lần 1 Toán chuyên trường THPT chuyên ĐHSP Hà Nội Đề thi thử vào 10 chuyên 2023 lần 1 Toán chuyên trường THPT chuyên ĐHSP Hà Nội Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay Sytu xin giới thiệu đến các bạn đề thi thử tuyển sinh vào lớp 10 THPT chuyên năm 2023 lần 1 môn Toán chuyên trường THPT chuyên Đại học Sư phạm Hà Nội. Kỳ thi sẽ diễn ra vào chiều Chủ Nhật ngày 26 tháng 03 năm 2023. Để đề thi thử này, chúng ta sẽ cùng xem qua một số bài toán: Cho số nguyên dương m thoả mãn \(3m + 5m + 14\) chia hết cho 15. Hãy chứng minh rằng \(3m + 5m + 14\) cũng chia hết cho 16. Trong tam giác ABC, với AB < AC và ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là tiếp điểm của BC, CA, AB với đường tròn (I). Đường thẳng đi qua D vuông góc với EF, cắt đường tròn (I) tại điểm thứ hai K (khác D). Gọi L là hình chiếu vuông góc của A trên IK. Chứng minh rằng: a) \(KIF = ACB\) và \(AL\) là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC. b) \(LK \cdot BC = AI \cdot EF\). c) Các đường thẳng DK, HJ, AL đồng quy. Lần lượt ghi các số 1000, 1001, 1002,..., 1010 lên 11 tấm thẻ trắng, mỗi thẻ ghi đúng một số. Sắp xếp tất cả 11 tấm thẻ vào hai chiếc hộp, một màu xanh và một màu đỏ, sao cho mỗi hộp có ít nhất một thẻ và tổng các số trong hộp xanh chia hết cho tổng các số trong hộp đỏ. Hỏi mỗi hộp có bao nhiêu tấm thẻ? Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em học tốt và đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Vĩnh Long
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Vĩnh Long gồm 6 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R), các đường cao AD, BM, CN cắt nhau tại H. a. Chứng minh rằng AM.AC=AN.AB b. Chứng minh rằng OA vuông góc với MN c. Gọi P là giao điểm của hai đường thẳng MN và BC. Đường thẳng đi qua N và song song với AC cắt AP, AD lần lượt tại I, G. Chứng minh rằng NI=NG
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 120km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10km/h nên xe ô tô đến B sớm hơn xe máy 36 phút. Tính vận tốc của mỗi xe. + Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K [ads] 1) Chứng minh bốn điểm C, N, K, I cùng thuộc một đường tròn 2) Chứng minh NB.NK = NM^2 3) Chứng minh tứ giác BHIK là hình thoi 4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O). Chứng minh ba điểm D, E, K thẳng hàng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Ninh
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Ninh gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác vuông có số đo các cạnh là các số tự nhiên có hai chữ số. Nếu đổi chỗ hai chữ số của số đo cạnh huyền ta được số đo một cạnh góc vuông. Tính bán kính đường tròn ngoại tiếp tam giác đó. + Cho 2n+1 số nguyên, trong đó có đúng một số 0 và các số 1, 2, 3 … n mỗi số xuất hiện hai lần. Chứng minh rằng với mọi số tự nhiên n ta luôn sắp xếp được 2n+1 số nguyên trên thành một dãy sao cho với mọi m = 1, 2 … n có đúng m số nằm giữa hai số m.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Nai
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Nai gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A ,đường cao AH .Gọi (P) và (Q) theo thứ tự là đường tròn nội tiếp của tam giác AHB và tam giác AHC. Kẻ tiếp tuyến chung ngoài (khác BC) của hai đường tròn (P) và (Q) nó cắt AB, AH, AC theo thứ tự ở M, K, N [ads] 1. Chứng minh tam giác HPQ đồng dạng với tam giác ABC 2. Chứng minh PK song song với AB và tứ giác BMNC nội tiếp 3. Chứng minh năm điểm A, M, P, Q, N cùng nằm trên một đường tròn 4. Gọi I là tâm đường tròn ngoại tiếp tam giác ABC, biết AB=a, AC=3a. Một đường thẳng thay đổi đi qua H cắt đường tròn ngoại tiếp tam giác ABC tại D và E. Tính giá trị lớn nhất của diện tích tam giác IDE theo a