Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG cấp tỉnh Toán 11 năm 2018 - 2019 sở GDĐT Bắc Ninh

Thứ Sáu ngày 15 tháng 03 năm 2019, sở Giáo dục và Đào tạo Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán 11 năm học 2018 – 2019, đây là dịp để các em được thể hiện hết năng lực của bản thân, những em được chọn sẽ là những tấm gương tiêu biểu trong học tập để học sinh toàn tỉnh noi theo, đồng thời qua kỳ thi này, sở Giáo dục và Đào tạo tỉnh Bắc Ninh sẽ tuyển chọn những em xuất sắc nhất để thành lập đội tuyển học sinh giỏi Toán 11 của tỉnh, tham dự kỳ thi học sinh giỏi Toán 11 cấp Quốc gia. Đề thi chọn HSG cấp tỉnh Toán 11 năm 2018 – 2019 sở GD&ĐT Bắc Ninh được biên soạn theo hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút (không kể thời gian giám thị coi thi phát đề), đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG cấp tỉnh Toán 11 năm 2018 – 2019 sở GD&ĐT Bắc Ninh : + Lớp 11 Toán có 34 học sinh tham gia kiểm tra môn Toán để chọn đội tuyển dự thi học sinh giỏi cấp tỉnh. Đề kiểm tra gồm 5 bài toán. Biết rằng mỗi bài toán thì có ít nhất 19 học sinh giải quyết được. Chứng minh rằng có 2 học sinh sao cho mỗi bài toán đều được một trong hai học sinh này giải quyết được. [ads] + Cho hình chóp S.ABCD, có đáy ABCD là hình chữ nhật với AB = a√3, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính độ dài đoạn HK theo a. b) Gọi I là giao điểm của hai đường thẳng HK, SO. Mặt phẳng (α) di động, luôn đi qua I và cắt các đoạn thẳng SA, SB, SC, SD lần lượt tại A’, B’, C’, D’. Tìm giá trị nhỏ nhất của P = SA’.SB’.SC’.SD’. + Cho tứ diện đều ABCD có đường cao AH. Mặt phẳng (P) chứa AH cắt ba cạnh BC, CD, BD lần lượt tại M, N, P; gọi α, β, γ là góc hợp bởi AM, AN, AP với mặt phẳng (BCD). Chứng minh rằng tanα^2 + tanβ^2 + tanγ^2 = 12.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic 27 tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề Olympic 27 tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng
Nội dung Đề chọn HSG lớp 11 môn Toán vòng 1 năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng Bản PDF Đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán lớp 11 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Trong mặt phẳng Oxy, cho hình bình hành ABCD, hình chiếu của điểm D lên AB, BC lần lượt là M(-2;2), N(2;-2). Biết rằng đường thẳng DB có phương trình là 3x – 5y + 1 = 0 và hoành độ điểm B lớn hơn 0. Tìm tọa độ điểm B. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập được bao nhiêu số có 4 chữ số đôi một khác nhau và chia hết cho 11 đồng thời tổng của 4 chữ số của nó cũng chia hết cho 11. + Cho hình chóp S.ABCD, đáy ABCD là hình bình hành, M là trung điểm của SA và E là trung điểm của SB; P thuộc cạnh SC sao cho SC = 3SP. 1) Dựng giao điểm của DB với mặt phẳng (MPE). 2) Gọi N là một điểm thuộc cạnh SB, mặt phẳng (MNP) cắt SD tại Q. Chứng minh SB/SN + SD/SQ = 5. File WORD (dành cho quý thầy, cô):
Đề khảo sát học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Quế Võ 1 Bắc Ninh
Nội dung Đề khảo sát học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Quế Võ 1 Bắc Ninh Bản PDF Đề khảo sát học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề khảo sát học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Quế Võ 1 – Bắc Ninh : + Nhà anh A muốn khoan một cái giếng sâu 20 mét dùng để lấy nước cho sinh hoạt gia đình. Có hai cơ sở khoan giếng tính chi phí như sau: Cơ sở I: Mét thứ nhất 200 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét tăng thêm 60 nghìn đồng so với giá của mỗi mét trước đó. Cơ sở II: Mét thứ nhất 10 nghìn đồng và kể từ mét thứ hai trở đi, giá của mỗi mét gấp 2 lần so với giá của mỗi mét trước đó.Hỏi gia đình anh A để tiết kiệm tiền thì nên chọn cơ sở nào để thuê, biết rằng hai cơ sở trên có chất lượng khoan là như nhau. + Cho hình lăng trụ tứ giác ABCD.A1B1C1D1, mặt phẳng (a) thay đổi và song song với hai đáy của lăng trụ lần lượt cắt các đoạn thẳng AB1, BC1, CD1, DA1 tại M, N, P, Q. Hãy xác định vị trí của mặt phẳng (a) để tứ giác MNPQ có diện tích nhỏ nhất. + Cho đa giác đều A1A2 … A2020 nội tiếp đường tròn tâm O, chọn ngẫu nhiên 4 đỉnh bất kỳ của đa giác đó. Tính xác suất để nhận được một tứ giác có đúng một cạnh là cạnh của đa giác. File WORD (dành cho quý thầy, cô):